《ucore lab1 exercise5》实验报告
资源
题目:实现函数调用堆栈跟踪函数
我们需要在lab1中完成kdebug.c中函数print_stackframe的实现,可以通过函数print_stackframe来跟踪函数调用堆栈中记录的返回地址。如果能够正确实现此函数,可在lab1中执行 “make qemu”后,在qemu模拟器中得到类似如下的输出:
ebp:0x00007b28 eip:0x00100992 args:0x00010094 0x00010094 0x00007b58 0x00100096
kern/debug/kdebug.c:305: print_stackframe+22
ebp:0x00007b38 eip:0x00100c79 args:0x00000000 0x00000000 0x00000000 0x00007ba8
kern/debug/kmonitor.c:125: mon_backtrace+10
ebp:0x00007b58 eip:0x00100096 args:0x00000000 0x00007b80 0xffff0000 0x00007b84
kern/init/init.c:48: grade_backtrace2+33
ebp:0x00007b78 eip:0x001000bf args:0x00000000 0xffff0000 0x00007ba4 0x00000029
kern/init/init.c:53: grade_backtrace1+38
ebp:0x00007b98 eip:0x001000dd args:0x00000000 0x00100000 0xffff0000 0x0000001d
kern/init/init.c:58: grade_backtrace0+23
ebp:0x00007bb8 eip:0x00100102 args:0x0010353c 0x00103520 0x00001308 0x00000000
kern/init/init.c:63: grade_backtrace+34
ebp:0x00007be8 eip:0x00100059 args:0x00000000 0x00000000 0x00000000 0x00007c53
kern/init/init.c:28: kern_init+88
ebp:0x00007bf8 eip:0x00007d73 args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8
<unknow>: -- 0x00007d72 –
请完成实验,看看输出是否与上述显示大致一致,并解释最后一行各个数值的含义。
提示:可阅读小节“函数堆栈”,了解编译器如何建立函数调用关系的。在完成lab1编译后,查看lab1/obj/bootblock.asm,了解bootloader源码与机器码的语句和地址等的对应关系;查看lab1/obj/kernel.asm,了解 ucore OS源码与机器码的语句和地址等的对应关系。
要求完成函数kern/debug/kdebug.c::print_stackframe的实现,提交改进后源代码包(可以编译执行) ,并在实验报告中简要说明实现过程,并写出对上述问题的回答。
补充材料:
由于显示完整的栈结构需要解析内核文件中的调试符号,较为复杂和繁琐。代码中有一些辅助函数可以使用。例如可以通过调用print_debuginfo函数完成查找对应函数名并打印至屏幕的功能。具体可以参见kdebug.c代码中的注释。
解答
代码实现
- 编程前,首先了解下当前情况:在Terminal下输入
make qemu
,发现打印以下信息后就退出了:
along:~/src/ucore/labcodes/lab1$ sudo make qemu
WARNING: Image format was not specified for 'bin/ucore.img' and probing guessed raw.
Automatically detecting the format is dangerous for raw images, write operations on block 0 will be restricted.
Specify the 'raw' format explicitly to remove the restrictions.
(THU.CST) os is loading ...
Special kernel symbols:
entry 0x00100000 (phys)
etext 0x001036f3 (phys)
edata 0x0010e950 (phys)
end 0x0010fdc0 (phys)
Kernel executable memory footprint: 64KB
- 分析print_stackframe的函数调用关系
kern_init ->
grade_backtrace ->
grade_backtrace0(0, (int)kern_init, 0xffff0000) ->
grade_backtrace1(0, 0xffff0000) ->
grade_backtrace2(0, (int)&0, 0xffff0000, (int)&(0xffff0000)) ->
mon_backtrace(0, NULL, NULL) ->
print_stackframe ->
- 找到print_stackframe函数,发现函数里面的注释已经提供了十分详细的步骤,基本上按照提示来做就行了。代码如下所示。
- 首先定义两个局部变量ebp、esp分别存放ebp、esp寄存器的值。这里将ebp定义为指针,是为了方便后面取ebp寄存器的值。
- 调用read_ebp函数来获取执行print_stackframe函数时ebp寄存器的值,这里read_ebp必须定义为inline函数,否则获取的是执行read_ebp函数时的ebp寄存器的值。
- 调用read_eip函数来获取当前指令的位置,也就是此时eip寄存器的值。这里read_eip必须定义为常规函数而不是inline函数,因为这样的话在调用read_eip时会把当前指令的下一条指令的地址(也就是eip寄存器的值)压栈,那么在进入read_eip函数内部后便可以从栈中获取到调用前eip寄存器的值。
- 由于变量eip存放的是下一条指令的地址,因此将变量eip的值减去1,得到的指令地址就属于当前指令的范围了。由于只要输入的地址属于当前指令的起始和结束位置之间,print_debuginfo都能搜索到当前指令,因此这里减去1即可。
- 以后变量eip的值就不能再调用read_eip来获取了(每次调用获取的值都是相同的),而应该从ebp寄存器指向栈中的位置再往上一个单位中获取。
- 由于ebp寄存器指向栈中的位置存放的是调用者的ebp寄存器的值,据此可以继续顺藤摸瓜,不断回溯,直到ebp寄存器的值变为0
void print_stackframe(void) {
uint32_t *ebp = 0;
uint32_t esp = 0;
ebp = (uint32_t *)read_ebp();
esp = read_eip();
while (ebp)
{
cprintf("ebp:0x%08x eip:0x%08x args:", (uint32_t)ebp, esp);
cprintf("0x%08x 0x%08x 0x%08x 0x%08x\n", ebp[2], ebp[3], ebp[4], ebp[5]);
print_debuginfo(esp - 1);
esp = ebp[1];
ebp = (uint32_t *)*ebp;
}
/* LAB1 YOUR CODE : STEP 1 */
/* (1) call read_ebp() to get the value of ebp. the type is (uint32_t);
* (2) call read_eip() to get the value of eip. the type is (uint32_t);
* (3) from 0 .. STACKFRAME_DEPTH
* (3.1) printf value of ebp, eip
* (3.2) (uint32_t)calling arguments [0..4] = the contents in address (uint32_t)ebp +2 [0..4]
* (3.3) cprintf("\n");
* (3.4) call print_debuginfo(eip-1) to print the C calling function name and line number, etc.
* (3.5) popup a calling stackframe
* NOTICE: the calling funciton's return addr eip = ss:[ebp+4]
* the calling funciton's ebp = ss:[ebp]
*/
}
- 编码完成后,执行
make qemu
,打印结果如下所示,与实验指导书的结果类似。
ebp:0x00007b38 eip:0x00100bf2 args:0x00010094 0x0010e950 0x00007b68 0x001000a2
kern/debug/kdebug.c:297: print_stackframe+48
ebp:0x00007b48 eip:0x00100f40 args:0x00000000 0x00000000 0x00000000 0x0010008d
kern/debug/kmonitor.c:125: mon_backtrace+23
ebp:0x00007b68 eip:0x001000a2 args:0x00000000 0x00007b90 0xffff0000 0x00007b94
kern/init/init.c:48: grade_backtrace2+32
ebp:0x00007b88 eip:0x001000d1 args:0x00000000 0xffff0000 0x00007bb4 0x001000e5
kern/init/init.c:53: grade_backtrace1+37
ebp:0x00007ba8 eip:0x001000f8 args:0x00000000 0x00100000 0xffff0000 0x00100109
kern/init/init.c:58: grade_backtrace0+29
ebp:0x00007bc8 eip:0x00100124 args:0x00000000 0x00000000 0x00000000 0x0010379c
kern/init/init.c:63: grade_backtrace+37
ebp:0x00007be8 eip:0x00100066 args:0x00000000 0x00000000 0x00000000 0x00007c4f
kern/init/init.c:28: kern_init+101
ebp:0x00007bf8 eip:0x00007d6e args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8
<unknow>: -- 0x00007d6d --
解释最后一行各个参数的含义
最后一行是 ebp:0x00007bf8 eip:0x00007d6e args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8
,共有ebp,eip和args三类参数,下面分别给出解释。
ebp:0x0007bf8
此时ebp的值是kern_init函数的栈顶地址,从obj/bootblock.asm文件中知道整个栈的栈顶地址为0x00007c00,ebp指向的栈位置存放调用者的ebp寄存器的值,ebp+4指向的栈位置存放返回地址的值,这意味着kern_init函数的调用者(也就是bootmain函数)没有传递任何输入参数给它!因为单是存放旧的ebp、返回地址已经占用8字节了。eip:0x00007d6e
eip的值是kern_init函数的返回地址,也就是bootmain函数调用kern_init对应的指令的下一条指令的地址。这与obj/bootblock.asm是相符合的。
7d6c: ff d0 call *%eax
7d6e: ba 00 8a ff ff mov $0xffff8a00,%edx
args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8
一般来说,args存放的4个dword是对应4个输入参数的值。但这里比较特殊,由于bootmain函数调用kern_init并没传递任何输入参数,并且栈顶的位置恰好在boot loader第一条指令存放的地址的上面,而args恰好是kern_int的ebp寄存器指向的栈顶往上第2~5个单元,因此args存放的就是boot loader指令的前16个字节!可以对比obj/bootblock.asm文件来验证(验证时要注意系统是小端字节序)。
00007c00 <start>:
7c00: fa cli
7c01: fc cld
7c02: 31 c0 xor %eax,%eax
7c04: 8e d8 mov %eax,%ds
7c06: 8e c0 mov %eax,%es
7c08: 8e d0 mov %eax,%ss
7c0a: e4 64 in $0x64,%al
7c0c: a8 02 test $0x2,%al
7c0e: 75 fa jne 7c0a <seta20.1>
《ucore lab1 exercise5》实验报告的更多相关文章
- [操作系统实验lab3]实验报告
[感受] 这次操作系统实验感觉还是比较难的,除了因为助教老师笔误引发的2个错误外,还有一些关键性的理解的地方感觉还没有很到位,这些天一直在不断地消化.理解Lab3里的内容,到现在感觉比Lab2里面所蕴 ...
- Ucore lab1实验报告
练习一 Makefile 1.1 OS镜像文件ucore.img 是如何一步步生成的? + cc kern/init/init.c + cc kern/libs/readline.c + cc ker ...
- ucore操作系统学习(三) ucore lab3虚拟内存管理分析
1. ucore lab3介绍 虚拟内存介绍 在目前的硬件体系结构中,程序要想在计算机中运行,必须先加载至物理主存中.在支持多道程序运行的系统上,我们想要让包括操作系统内核在内的各种程序能并发的执行, ...
- 《ucore lab3》实验报告
资源 ucore在线实验指导书 我的ucore实验代码 练习1:给未被映射的地址映射上物理页 题目 完成do_pgfault(mm/vmm.c)函数,给未被映射的地址映射上物理页.设置访问权限的时候需 ...
- 《ucore lab8》实验报告
资源 ucore在线实验指导书 我的ucore实验代码 练习1: 完成读文件操作的实现(需要编码) 题目 首先了解打开文件的处理流程,然后参考本实验后续的文件读写操作的过程分析,编写在sfs_inod ...
- 《ucore lab7》实验报告
资源 ucore在线实验指导书 我的ucore实验代码 练习1: 理解内核级信号量的实现和基于内核级信号量的哲学家就餐问题(不需要编码) 题目 完成练习0后,建议大家比较一下(可用meld等文件dif ...
- 《ucore lab6》实验报告
资源 ucore在线实验指导书 我的ucore实验代码 练习1: 使用 Round Robin 调度算法(不需要编码) 题目 完成练习0后,建议大家比较一下(可用kdiff3等文件比较软件) 个人完成 ...
- 《ucore lab5》实验报告
资源 ucore在线实验指导书 我的ucore实验代码 练习1: 加载应用程序并执行(需要编码) 题目 do_execv函数调用load_icode(位于kern/process/proc.c中) 来 ...
- 《ucore lab4》实验报告
资源 ucore在线实验指导书 我的ucore实验代码 练习1:分配并初始化一个进程控制块 题目 alloc_proc函数(位于kern/process/proc.c中) 负责分配并返回一个新的str ...
随机推荐
- linux 查看硬盘使用情况
在windows系统中,我们可以很容易的查看磁盘的使用情况,在linux系统中,我们可以使用命令来查看磁盘使用情况. 1.df命令 作用:用来查看硬盘的挂载点,以及对应的硬盘容量信息.包括硬盘的总大小 ...
- [Unit test] jasmine createSpyObj
beforeEach(() => { contextStub = { debug: false, engine: jasmine.createSpyObj('engine', [ 'create ...
- WinDbg常用命令系列---!findstack
简介 !findstack扩展查找所有包含指定的符号或模块的堆栈.此命令搜索线程调用堆栈中的特定符号,并显示匹配的线程. 使用形式 !findstack Symbol[DisplayLevel] !f ...
- yugabyte 做为hasura graphql-engine的pg数据引擎
今天看了下yugabyte 的更新 ,ysql 基本可以生产可用,刚好测试了下与hasura graphql-engine的集成,发现很不错,可以直接运行 环境准备 docker-compose ve ...
- haproxy 2.0 dataplaneapi rest api 转为graphql
haproxy 2.0 dataplaneapi rest api 是比较全的,以下是一个简单的集成graphql,通过swagger-to-graphql 转换为graphql api 方便使用 环 ...
- Django 基础篇(二)视图与模板
视图 在django中,视图对WEB请求进行回应 视图接收reqeust对象作为第一个参数,包含了请求的信息 视图就是一个Python函数,被定义在views.py中 #coding:utf- fro ...
- HNOI2015总结
// 此博文为迁移而来,写于2015年4月21日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vy9t.html 这次省 ...
- 经典算法(四) 数组相关 & 螺旋矩阵 & 数字大小写转换 & 字符串相关
一.求所有子数组的和的最大值 public static void main(String[] args) { int[] a = { 1, -2, 3, 10, -4, 7, 2, -5 }; Fi ...
- OpenStack创建网络和虚拟机、dhcp设备、虚拟路由器、虚拟机访问外网原理分析
创建网络和虚拟机流程: 1.创建网络和子网 背后发生了什么: Neutron让控制节点上针对此子网的dhcp(虚拟设备)启动,用于给该子网下的实例分配ip 2.生成虚拟机 背后发生了什么: 用户通过G ...
- JAVA字符编码二:Unicode,ISO-8859,GBK,UTF-8编码及相互转换
第二篇:JAVA字符编码系列二:Unicode,ISO-8859-1,GBK,UTF-8编码及相互转换 1.函数介绍 在Java中,字符串用统一的Unicode编码,每个字符占用两个字节,与编码有 ...