Data-Structure-Notes
Data Structure Notes
Chapter-1 Sorting Algorithm
- **Selection Sorting: **
/*
* Selection Sort
*/
template<typename T>
void selectionSort(T arr[], int n) {
for (int i = 0;i < n;i++) {
int minIndex = i;
for (int j = i + 1;j < n;j++) {
if (arr[j] < arr[minIndex])
minIndex = j;
}
swap(arr[i], arr[minIndex]);
}
}
// From both ends to exchange the elements in original array, it's a better solution optimize the previous Selection Sort.
template<typename T>
void OptimizedselectionSort(T arr[], int n) {
int left = 0, right = n - 1;
while (left < right) {
int minIndex = left;
int maxIndex = right;
// In each rounds must assure arr[minIndex] <= arr[maxIndex]
if (arr[minIndex] > arr[maxIndex])
swap(arr[minIndex], arr[maxIndex]);
//Traversing the array to choose the match positon.
for (int i = left + 1; i < right; i++)
if (arr[i] < arr[minIndex])
minIndex = i;
else if (arr[i] > arr[maxIndex])
maxIndex = i;
swap(arr[left], arr[minIndex]);
swap(arr[right], arr[maxIndex]);
left++;
right--;
}
return;
}
- **Bubble Sorting: **
/*
* BubbleSort
*/
template<typename T>
void BubbleSort(T arr[], int n) {
bool swapped;
do {
swapped = false;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
swapped = true;
}
// 优化, 每一趟Bubble Sort都将最大的元素放在了最后的位置
// 所以下一次排序, 最后的元素可以不再考虑
n--;
} while (swapped);
}
// 我们的第二版bubbleSort,使用newn进行优化
template<typename T>
void OptimizedBubbleSort(T arr[], int n) {
int newn; // 使用newn进行优化
do {
newn = 0;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
// 记录最后一次的交换位置,在此之后的元素在下一轮扫描中均不考虑
newn = i;
}
n = newn;
} while (newn > 0);
}
- **Shell Sorting: **
template<typename T>
void shellSort(T arr[], int n) {
// 计算 increment sequence: 1, 4, 13, 40, 121, 364, 1093...
int h = 1;
while (h < n / 3)
h = 3 * h + 1;
while (h >= 1) {
// h-sort the array
for (int i = h; i < n; i++) {
// 对 arr[i], arr[i-h], arr[i-2*h], arr[i-3*h]... 使用插入排序
T e = arr[i];
int j;
for (j = i; j >= h && e < arr[j - h]; j -= h)
arr[j] = arr[j - h];
arr[j] = e;
}
h /= 3;
}
}
- **Insert Sorting: **对于近乎有序的数组可以降到$ O(n)$的时间复杂度。
template<typename T>
void BinaryInsertionSort(T arr[], int n) {
int i, j, low, high, mid;
for (i = 1;i < n;i++) {
T e = arr[i];
//Binary Searching in the ordered range of array.
low = 0; high = i - 1;
while (low<= high)
{
mid = (low + high) / 2;
if (arr[mid] > e) high = mid - 1;
else low = mid + 1;
}
//Moving elements.
for (j = i - 1;j >= high + 1;--j) {
arr[j + 1] = arr[j];
}
arr[high + 1] = e;
}
}
template<typename T>
void OptimizedInsertionSort(T arr[], int n) {
for (int i = 1;i < n;i++) {
// Find right position without exchange frequently.
T e = arr[i];
int j;
for (j = i;j > 0 && arr[j - 1] > e;j--) {
arr[j] = arr[j - 1];
}
arr[j] = e;
}
}
**Merge Sorting: **
- Tips1:Merge Sort Optimize in nearly ordered array
void __mergeSort(T arr[], int l, int r) {
if (l >= r) return;
int mid = (l + r) / 2; // variable 'mid' may overflow
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
__merge(arr, l, mid, r);
}
- Tips2:When the sorting range of array in a short length, using InsertSort replace MergeSort can be more faster.
template<typename T>
void __mergeSort(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) { // The '15' is a constant represent the minmum judge range.
InsertionSort(arr, l, r);
return;
}
int mid = (l + r) / 2; // variable 'mid' may overflow
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
__merge(arr, l, mid, r);
}
Botton to Up Merge Sorting : The algorithm can be usd in the LinkedList . The original MergeSort may preform better than this algorithm in normal situation.
- Standard
template<typename T>
void mergeSortBottonToUp(T arr[], int n) {
for(int size = 1; size <= n; size += size)
// In order to assure exist two sperate array, setting (i+size < n) not (i < n)
for (int i = 0; i + size < n ; i += size + size) {
// merge arr[i ... i+size-1] and arr[i+size ... i+2*size-1]
// In order to assure latter array isn't overflow so use min(i + size + size - 1, n-1) to choosing a right part.
__merge(arr, i, i + size - 1, min(i + size + size - 1, n-1));
}
}
- Optimization
template <typename T>
void mergeSortBU2(T arr[], int n){
// 对于小规模数组, 使用插入排序
for( int i = 0 ; i < n ; i += 16 )
insertionSort(arr,i,min(i+15,n-1));
// 一次性申请aux空间, 并将这个辅助空间以参数形式传递给完成归并排序的各个子函数
T* aux = new T[n];
for( int sz = 16; sz <= n ; sz += sz )
for( int i = 0 ; i < n - sz ; i += sz+sz )
// 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
if( arr[i+sz-1] > arr[i+sz] )
__merge2(arr, aux, i, i+sz-1, min(i+sz+sz-1,n-1) );
delete[] aux; // 使用C++, new出来的空间不要忘记释放掉:)
}
QuickSort (Divide-and-Conquer Algorithm)
Partition
Insert Sort Optimization
// sort the range of [l ... r]
template <typename T>
void __quickSort(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) {
OptimizedInsertionSort(arr, l, r);
return;
}
int p = __partition(arr, l, r);
__quickSort(arr, l, p - 1);
__quickSort(arr, p + 1, r);
}
Optimization in the face of nearly ordered array
Compare to MergeSort, the Sorting Tree generate by Quick Sort is more unbalanced.The worst situation the effience of quick sort can be deteriorate to $O(n^2)$
Tradinational Method using the left element to be demarcating element. In order to solving the problem, we select the demarcating element randomly.
template
int __partition(T arr[], int l, int r) {swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
T v = arr[l];
//arr[l+i ... j] < v;arr[j+1 ... i] > v
int j = l;
for (int i = l + 1;i <= r;i++) {
if (arr[i] < v) {
swap(arr[j + 1], arr[i]);
j++;
}
}
swap(arr[l], arr[j]);
return j;
}
template
void quickSort(T arr[], int n) {
srand(time(NULL)); // The partial of randomly select.
__quickSort(arr, 0, n - 1);
}- **Optimization in the face of many repeating Numbers. (*Dual Qucik Sort*)**
When face many repeating numbers, the speration of array may unbalanced. In this situation, Quick Sort can be degraded to $O(n^2)$.
**Solution :**
```cpp
template <typename T>
int __partition2(T arr[], int l, int r) {
swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
T v = arr[l];
//arr[l+i ... j] < v; arr[j+1 ... i] > v
int i = l + 1, j = r;
while (true) {
//From front to behind to find a even bigger number.
//From behind to front to find a even smaller number.
while (i <= r&& arr[i] < v) i++;
while (j >= l + 1 && arr[j] > v) j--;
if (i > j) break;
swap(arr[i], arr[j]);
i++;
j--;
}
swap(arr[l], arr[j]);
return j;
}
- Optimization in the face of many repeating Numbers. (Qucik Sort 3 Ways)
template <typename T>
void __quickSort3(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) {
OptimizedInsertionSort(arr, l, r);
return;
}
// partition
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l];
int lt = l; //arr[l+1 ... lt] < v
int gt = r + 1; //arr[gt ... r] > v
int i = l + 1; //arr[lt+1 ... i] == v
while (i < gt) {
if (arr[i] < v) {
swap(arr[i], arr[lt + 1]);
lt++;
i++;
}
else if(arr[i] > v) {
swap(arr[i], arr[gt - 1]);
gt--;
}
else {// arr[i] == v
i++;
}
}
swap(arr[l], arr[lt]);
__quickSort3(arr, l, lt - 1);
__quickSort3(arr, gt, r);
}
template <typename T>
void quickSort(T arr[], int n) {
srand(time(NULL)); // The partial of randomly select.
__quickSort3(arr, 0, n - 1);
}
Data-Structure-Notes的更多相关文章
- [LeetCode] All O`one Data Structure 全O(1)的数据结构
Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...
- [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计
Design a data structure that supports the following two operations: void addWord(word) bool search(w ...
- [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计
Design and implement a TwoSum class. It should support the following operations:add and find. add - ...
- Finger Trees: A Simple General-purpose Data Structure
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...
- Mesh Data Structure in OpenCascade
Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...
- ✡ leetcode 170. Two Sum III - Data structure design 设计two sum模式 --------- java
Design and implement a TwoSum class. It should support the following operations: add and find. add - ...
- leetcode Add and Search Word - Data structure design
我要在这里装个逼啦 class WordDictionary(object): def __init__(self): """ initialize your data ...
- Java for LeetCode 211 Add and Search Word - Data structure design
Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...
- HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5739 Description Professor Zhang has an undirect ...
- LeetCode Two Sum III - Data structure design
原题链接在这里:https://leetcode.com/problems/two-sum-iii-data-structure-design/ 题目: Design and implement a ...
随机推荐
- WinDbg常用命令系列---!uniqstack
简介 这个!uniqstack扩展扩展显示的所有线程的堆栈的所有当前进程,不包括显示为具有重复项的堆栈中. 使用形式 !uniqstack [ -b | -v | -p ] [ -n ] 参数 -b将 ...
- 将zabbix服务和monitor服务在一个机器上部署
问题,两个服务的文件路径都是 /usr/local/sdata下,要让两个服务共存,至少需要讲一个服务的文件迁移到别的文件夹,同时将所有的配置项都进行修改,使能找到指定的文件路径, 方案1,先按照za ...
- 一起学Makefile(三)
makefile工具箱 complicated项目的构建 文件结构如下: 文件内容如下: 项目依赖关系: gcc编译出可执行文件的过程包含了两个过程,编译和链接. makefile如下: 运行结果:
- OpenFOAM——冲击斜坡
本算例来自<ANSYS Fluid Dynamics Verification Manual>中的VMFL045: Oblique Shock Over an Inclined Ramp ...
- Django实现自动发布(1数据模型)
公司成立之初,业务量较小,一个程序包揽了所有的业务逻辑,此时服务器数量少,上线简单,基本开发-测试-上线都是由开发人员完成. 随着业务量逐渐上升,功能增多,代码量增大,而单一功能上线需要重新编译整个程 ...
- jenkins安装启动(docker)
mkdir /opt/jenkins -pvim /opt/jenkins/Dockerfile FROM jenkins/jenkins:lts EXPOSE 8080 50000 vim /opt ...
- CMU Advanced DB System - MVCC
https://zhuanlan.zhihu.com/p/40208895 Mysql的MVCC实现 https://severalnines.com/database-blog/comparing- ...
- SpringMvc的 @Valid 拦截到的异常如何抛出
SpringMvc中,校验参数可以使用 @Valid 注解,同时在相应的对象里使用 @NotBlank( message = "昵称不能为空")@NotNull( message ...
- vue-cli webpack打包开启Gzip 报错—— Cannot find module 'compression-webpack-plugin
异常描述: 复用以前框架,打包的时候报异常提示: Cannot find module 'compression-webpack-plugin" 然后安装插件: npm install -- ...
- 2的幂和按位与&——效率
以前学生时代,只是完成功能就行,进入公司之后,由于产品的特殊性,需要非常考虑效率,发现有以下几个策略(该文不定时更新): hash%length==hash&(length-1)的前提是len ...