(与本节内容无关///////////////////////////保存图片参数为—-gui.save_all_screenshots true////////////////////) 

在我们安装好CUDA、boost、OpenCV之后,接下来的一些库(libSDL、protobuf等)的安装,我们都可以用系统内部的程序进行安装。比如

安装libSDL,我们终端输入

apt-cache search libsdl
  • 1
  • 1

系统会给出一系列程序,我们选择其中的libsdl1.2-dev进行安装。

sudo apt-get install libsdl1.2-dev
  • 1
  • 1

(这里注意不要安装libsdl2-dev,因为安装之后生成的文件夹是SDL2,之后doppia调用时会出现找不到“SDL files”的错误)

安装protobuf库,则是我经过多番测试,得到的能够通过v1,v2测试的安装方法。(之前尝试安装protobuf2.5.0和protobuf2.4.1,doppia都找不到路径,而想把它们删除又删除不了,很麻烦),之后我测试了几个自带的protobuf库,发现安装以下四个库能够通过v1,v2的测试,安装命令为:

sudo apt-get install libprotobuf-dev libprotoc-dev python-protobuf protobuf-compiler
  • 1
  • 1

切换到doppia目录下,运行

sudo sh ./generate_protocol_buffer_files.sh
  • 1
  • 1

protobuf通过doppia-v1检测的返回信息为

Generating objects detection files...
(Ground plane and video input files not yet handled by this script)
End of game. Have a nice day!
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

protobuf通过doppia-v2检测的返回信息为

+ cd src/objects_detection/
+ protoc --cpp_out=./ detector_model.proto detections.proto
+ protoc --python_out=../../tools/objects_detection/ detector_model.proto detections.proto
+ cd ../..
+ cd src/stereo_matching/ground_plane/
+ protoc --cpp_out=./ plane3d.proto
+ protoc --python_out=../../../tools/stixels_evaluation plane3d.proto
+ cd ../../..
+ cd src/stereo_matching/stixels/
+ protoc --cpp_out=./ -I. -I../ground_plane --include_imports stixels.proto ground_top_and_bottom.proto
--include_imports only makes sense when combined with --descriptor_set_out.
+ protoc --python_out=../../../tools/stixels_evaluation -I. -I../ground_plane --include_imports stixels.proto ground_top_and_bottom.proto
--include_imports only makes sense when combined with --descriptor_set_out.
+ cd ../../..
+ cd src/video_input/calibration
+ protoc --cpp_out=./ calibration.proto
+ cd ../../..
+ cd src/helpers/data
+ protoc --cpp_out=./ DataSequenceHeader.proto
+ protoc --python_out=../../../tools/data_sequence DataSequenceHeader.proto
+ cd ../../..
+ cd src/helpers
+ cd ../..
+ cd src/tests/data_sequence/
+ protoc --cpp_out=./ TestData.proto
+ cd ../../..
+ echo End of game. Have a nice day!
End of game. Have a nice day!
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

到这里,我们该安装的库大部分已经安装成功,接下来就可以开始编译doppia啦!(至于可能还缺少的库,可以根据doppia的错误提示进行安装)

编译运行doppia/src/applications/objects_detection 

由于我只需要用到doppia的objects_detection的功能,而之前我在编译doppia-v2时,ground_estimation和stixel_world都能编译运行。所以这次在编译doppia-v1时,我就直接切入“主题”,编译运行objects_detection。下面也主要是列出我在编译objects_detection是遇到的问题以及相应的解决方案。

错误一,创建(build)错误 

error:

/home/mx/doppia/src/applications/objects_detection/../../../src/helpers/data/DataSequence.hpp:293:56: error: invalid use of incomplete type ‘class google::protobuf::io::CodedInputStream’
const bool read_size_success = input_coded_stream_p->ReadLittleEndian64(&size);
  • 1
  • 2
  • 1
  • 2

solution: 

doppia/src/helpers/data/DataSequence.hpp
  • 1
  • 1

头文件中,在

#include "DataSequenceHeader.pb.h"
#include <google/protobuf/io/zero_copy_stream_impl.h>
  • 1
  • 2
  • 1
  • 2

两行之间添加一行新的引用,如下,

#include "DataSequenceHeader.pb.h"
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

错误二,创建(build)错误 

error:

/home/mx/doppia/src/applications/objects_detection/../../../src/objects_detection/gpu/integral_channels_detector.cu.hpp:23:9: error: ‘fast_stage_t’ in ‘class doppia::SoftCascadeOverIntegralChannelsModel’ does not name a type
typedef SoftCascadeOverIntegralChannelsModel::fast_stage_t cascade_stage_t;
^
/home/mx/doppia/src/applications/objects_detection/../../../src/objects_detection/gpu/integral_channels_detector.cu.hpp:33:36: error: ‘cascade_stage_t’ was not declared in this scope
typedef Cuda::DeviceMemoryLinear2D<cascade_stage_t> gpu_detection_cascade_per_scale_t;
^
/home/mx/doppia/src/applications/objects_detection/../../../src/objects_detection/gpu/integral_channels_detector.cu.hpp:33:51: error: template argument 1 is invalid
typedef Cuda::DeviceMemoryLinear2D<cascade_stage_t> gpu_detection_cascade_per_scale_t;
^
/home/mx/doppia/src/applications/objects_detection/../../../src/objects_detection/gpu/integral_channels_detector.cu.hpp:33:86: error: invalid type in declaration before ‘;’ token
typedef Cuda::DeviceMemoryLinear2D<cascade_stage_t> gpu_detection_cascade_per_scale_t;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

这里出现错误原因是因为common_settings.cmake中没有添加cuda链接库路径。 

solution: 

编辑common_settings.cmake,在其中添加一个条件项

elseif(${HOSTNAME} STREQUAL  "mx-pc")
message(STATUS "Using mx-pc optimisation options") option(USE_GPU "Should the GPU be used ?" TRUE)
set(CUDA_BUILD_CUBIN OFF)
set(local_CUDA_LIB_DIR "/usr/local/cuda/lib64")
set(cuda_LIBS "")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

这里mx-pc是我电脑的主机名,你需要将它改成自己电脑的主机名。

错误三,创建(build)错误 

error:

/home/mx/doppia/src/objects_detection/SoftCascadeOverIntegralChannelsFastFractionalStage.cpp:24:9: error: ‘swap’ is not a member of ‘std’
std::swap(weak_classifier.level2_true_node, weak_classifier.level2_false_node);
  • 1
  • 2
  • 1
  • 2

solution: 

doppia/src/objects_detection/SoftCascadeOverIntegralChannelsFastFractionalStage.cpp
  • 1
  • 1

文件开头添加一行引用

#include<iostream>
  • 1
  • 1

解决了以上三个错误后,doppia就可以创建(build)成功啦!但要想运行成功,还得改正以下2个错误。

错误四,链接(link)错误 

error:

Linking CXX executable objects_detection
/usr/bin/ld: cannot find -lboost_program_options-mt
/usr/bin/ld: cannot find -lboost_filesystem-mt
/usr/bin/ld: cannot find -lboost_system-mt
/usr/bin/ld: cannot find -lboost_thread-mt
collect2: error: ld returned 1 exit status
make[2]: *** [objects_detection] 错误 1
make[1]: *** [CMakeFiles/objects_detection.dir/all] 错误 2
make: *** [all] 错误 2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

这里出现错误的原因,是boost库链接出错,这时候我们需要修改CMakeList.txt文件,这里我就直接把CMakeList.txt贴出来,修改的地方做过注释。 

solution:

# This is a CMake build file, for more information consult:
# http://en.wikipedia.org/wiki/CMake
# and
# http://www.cmake.org/Wiki/CMake
# http://www.cmake.org/cmake/help/syntax.html
# http://www.cmake.org/Wiki/CMake_Useful_Variables
# http://www.cmake.org/cmake/help/cmake-2-8-docs.html # to compile the local code you can use: cmake ./ && make -j2 # ----------------------------------------------------------------------
# Base CMake setup cmake_minimum_required (VERSION 2.6) set(doppia_root "../../..") set(CMAKE_MODULE_PATH $ENV{CMAKE_MODULE_PATH})
set(CMAKE_MODULE_PATH "./" ${doppia_root} ${CMAKE_MODULE_PATH})
set(CMAKE_MODULE_PATH "/home/rodrigob/work/code/doppia_references/cuda/FindCUDA/CMake/cuda" ${CMAKE_MODULE_PATH})
set(CMAKE_MODULE_PATH "/users/visics/rbenenso/code/references/cuda/FindCUDA/CMake/cuda" ${CMAKE_MODULE_PATH}) # ----------------------------------------------------------------------
# Setup the project include(FindPkgConfig)
project (ObjectsDetection) # ----------------------------------------------------------------------
# Site specific configurations
include(${doppia_root}/common_settings.cmake) # ----------------------------------------------------------------------
# Setup required libraries
pkg_check_modules(libpng REQUIRED libpng)
#pkg_check_modules(OpenEXR REQUIRED OpenEXR)
pkg_check_modules(opencv REQUIRED opencv>=2.3)
#set(vw_LIBRARIES "-lvwCore -lvwImage -lvwStereo -lvwFileIO -lvwMath -lvwInterestPoint") set(opencv_LIBRARIES
opencv_core opencv_imgproc opencv_highgui opencv_ml
opencv_video opencv_features2d
opencv_calib3d
#opencv_objdetect opencv_contrib
opencv_legacy opencv_flann
) # quick hack for opencv2.4 support # 修改1:find where is boost
#(+)find_package(Boost REQUIRED
#(+) COMPONENTS program_options filesystem system thread
#(+) )
find_package(Boost REQUIRED
COMPONENTS program_options filesystem system thread
) # ----------------------------------------------------------------------
# Setup CUDA
if(USE_GPU)
find_package(CUDA 4.0 REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS} ${CUDA_CUT_INCLUDE_DIR})
endif(USE_GPU) # ----------------------------------------------------------------------
# Setup link and include directories set(local_LIBRARY_DIRS
"/usr/local/lib"
"/users/visics/rbenenso/no_backup/usr/local/lib"
"/usr/lib64"
"/usr/lib64/atlas"
"/usr/lib/sse2/atlas"
"/usr/lib/llvm-2.8/lib"
${local_CUDA_LIB_DIR}
)
set(local_INCLUDE_DIRS
"/users/visics/rbenenso/no_backup/usr/local/include"
"/usr/include/eigen2/"
"/usr/local/include/eigen2"
"/usr/local/cuda/include"
${CUDA_INCLUDE_DIRS}
) link_directories(
${libpng_LIBRARY_DIRS}
${OpenEXR_LIBRARY_DIRS}
${opencv_LIBRARY_DIRS}
${local_LIBRARY_DIRS}
) include_directories(
"${doppia_root}/libs"
"${doppia_root}/src"
${libpng_INCLUDE_DIRS}
${OpenEXR_INCLUDE_DIRS}
${opencv_INCLUDE_DIRS}
${local_INCLUDE_DIRS}
"${doppia_root}/libs/cudatemplates/include"
) if(USE_GPU)
cuda_include_directories("${doppia_root}/libs/")
endif(USE_GPU) # ----------------------------------------------------------------------
# Collect source files set(doppia_src "${doppia_root}/src")
set(doppia_stereo "${doppia_root}/src/stereo_matching") file(GLOB SrcCpp
"./ObjectsDetection*.cpp"
"./draw*.cpp"
"${doppia_src}/*.cpp"
#"${doppia_src}/objects_detection/*.c*"
"${doppia_src}/objects_detection/Abstract*.c*"
"${doppia_src}/objects_detection/*Converter.c*"
"${doppia_src}/objects_detection/Base*.c*"
"${doppia_src}/objects_detection/*Factory.c*"
"${doppia_src}/objects_detection/Greedy*.c*"
"${doppia_src}/objects_detection/Detection*.c*"
"${doppia_src}/objects_detection/*Model.c*"
"${doppia_src}/objects_detection/*Stage.c*"
"${doppia_src}/objects_detection/*Integral*.c*"
"${doppia_src}/objects_detection/MultiscalesIntegral*.c*"
"${doppia_src}/objects_detection/integral_channels/Integral*.cpp"
"${doppia_src}/objects_detection/FastestPedestrian*.c*"
"${doppia_src}/objects_detection/DetectorSearchRange.c*"
"${doppia_src}/objects_detection/*.pb.c*"
"${doppia_src}/objects_detection/non_maximal_suppression/*.c*" "${doppia_src}/objects_tracking/*.cpp" "${doppia_src}/applications/*.cpp"
"${doppia_src}/applications/stixel_world/*Gui.cpp"
"${doppia_src}/applications/stixel_world/draw*.cpp" #"${doppia_stereo}/*.cpp"
"${doppia_stereo}/cost_volume/*CostVolume.cpp"
"${doppia_stereo}/cost_volume/*CostVolumeEstimator*.cpp"
"${doppia_stereo}/cost_volume/DisparityCostVolumeFromDepthMap.cpp"
"${doppia_stereo}/cost_functions.cpp"
"${doppia_stereo}/CensusCostFunction.cpp"
"${doppia_stereo}/CensusTransform.cpp"
"${doppia_stereo}/GradientTransform.cpp"
"${doppia_stereo}/AbstractStereoMatcher.cpp"
"${doppia_stereo}/AbstractStereoBlockMatcher.cpp"
"${doppia_stereo}/SimpleBlockMatcher.cpp"
"${doppia_stereo}/MutualInformationCostFunction.cpp"
"${doppia_stereo}/ConstantSpaceBeliefPropagation.cpp"
"${doppia_stereo}/qingxiong_yang/*.cpp"
"${doppia_stereo}/SimpleTreesOptimizationStereo.cpp"
"${doppia_stereo}/OpenCvStereo.cpp" "${doppia_stereo}/ground_plane/*.cpp"
"${doppia_stereo}/stixels/*.cpp"
#"${doppia_stereo}/stixels/*.cc"
"${doppia_src}/video_input/*.cpp"
"${doppia_src}/video_input/calibration/*.c*"
"${doppia_src}/video_input/preprocessing/*.cpp"
#"${doppia_src}/features_tracking/*.cpp"
"${doppia_src}/image_processing/*.cpp"
"${doppia_src}/drawing/gil/*.cpp"
) file(GLOB HelpersCpp
#"${doppia_src}/helpers/*.cpp"
"${doppia_src}/helpers/data/*.c*"
"${doppia_src}/helpers/any_to_string.cpp"
"${doppia_src}/helpers/get_section_options.cpp"
"${doppia_src}/helpers/Log.cpp"
"${doppia_src}/helpers/loggers.cpp"
"${doppia_src}/helpers/AlignedImage.cpp"
"${doppia_src}/helpers/replace_environment_variables.cpp"
"${doppia_src}/helpers/objects_detection/*.cpp"
) file(GLOB SrcGpuCpp
"${doppia_src}/objects_detection/Gpu*.cpp"
"${doppia_src}/objects_detection/integral_channels/Gpu*.cpp"
"${doppia_src}/helpers/gpu/*.cpp" #"${doppia_stereo}/SimpleTreesGpuStereo.cpp"
) file(GLOB SrcCuda
"${doppia_src}/objects_detection/integral_channels/gpu/*.cu"
"${doppia_src}/objects_detection/integral_channels/gpu/*.cpp"
"${doppia_src}/objects_detection/gpu/*.cu"
"${doppia_src}/objects_detection/gpu/*.cpp" #"${doppia_src}/helpers/gpu/*.cu" # "${doppia_stereo}/*.cu.c*"
# "${doppia_stereo}/*.cu"
# "${doppia_stereo}/gpu/*.cu.c*"
# "${doppia_stereo}/gpu/*.cu"
) list(REMOVE_ITEM SrcCpp ${SrcCuda}) # just in case if(USE_GPU) # add GPU related source code to the executable list
list(APPEND SrcCpp ${SrcGpuCpp}) # add GPU related libraries
list(APPEND opencv_LIBRARIES opencv_gpu) # ----------------------------------------------------------------------
# Compile CUDA stuff
cuda_include_directories(${local_CUDA_CUT_INCLUDE_DIRS})
cuda_include_directories(${CUDA_INCLUDE_DIRS} ${CUDA_CUT_INCLUDE_DIR} ${local_CUDA_CUT_INCLUDE_DIR})
link_directories(${local_CUDA_CUT_LIBRARY_DIRS}) cuda_add_library(cuda_stuff_library ${SrcCuda})
target_link_libraries(cuda_stuff_library
${CUDA_LIBRARIES}
${cutil_LIB}
) #set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --generate-line-info) # used during profiling endif(USE_GPU)
# ----------------------------------------------------------------------
# Create the executable
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x") # required for unrestricted unions
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -p") # add gprof information add_library(cpp_stuff_library ${SrcCpp} ${HelpersCpp}) add_executable(objects_detection "./objects_detection.cpp") target_link_libraries(objects_detection cpp_stuff_library ${cg_LIBRARIES}
# linking with CgGL _after_ boost_program_options generates a segmentation fault ! boost_program_options 1.39 has a bug
#修改2:link to boost
#(-)boost_program_options-mt boost_filesystem-mt boost_system-mt boost_thread-mt
#(+)${Boost_LIBRARIES}
${Boost_LIBRARIES}
protobuf pthread
SDL X11 Xext #Xrandr
gomp
${libpng_LIBRARIES} jpeg
# ${OpenEXR_LIBRARIES}
${opencv_LIBRARIES} #${vw_LIBRARIES}
#csparse sparse spblas mv
#lapack blas atlas ${google_perftools_LIBS} # enables profiling, see http://code.google.com/p/google-perftools #`OcelotConfig -l`
#ocelot
#boost_system-mt boost_filesystem-mt boost_thread-mt
#GLEW
#LLVMAsmParser LLVMX86Disassembler LLVMX86AsmParser LLVMX86CodeGen LLVMSelectionDAG
#LLVMAsmPrinter LLVMMCParser LLVMX86AsmPrinter LLVMX86Info LLVMJIT
#LLVMExecutionEngine LLVMCodeGen LLVMScalarOpts LLVMInstCombine LLVMTransformUtils LLVMipa
#LLVMAnalysis LLVMTarget LLVMMC LLVMCore LLVMSupport LLVMSystem
) if(USE_GPU)
target_link_libraries(objects_detection cuda_stuff_library ${local_CUDA_LIB})
endif(USE_GPU)
# ----------------------------------------------------------------------
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271

到这里就OK啦!

最后运行成功你会看到一个简短地video,以及下面这样的信息

2015-05-09 16:33:23 {7feb06974880} [ BaseIntegralChannelsDetector ] : Warning: At scale index 47 the detection window size is larger than the biggest ground plane corridor. Setting the detection search to a single line.
scale_index == 47, original_height == 18, updated_height == 1
Expected speed gain == 5.28x (num pixels original/updated)
GpuVeryFastIntegralChannelsDetector::compute_v2 max search range (min_x, min_y; max_x, max_y) == (0, 0; 153, 58)
2015-05-09 16:33:23 {7feb06974880} [ GpuIntegralChannelsDetector ] : scaled_x == 640, scaled_y == 480
Requested frame number 11 but frames should be in range (0, 10)
Processed a total of 10 input frames
Average objects detection speed per iteration 29.36 [Hz] (in the last 10 iterations)
End of game, have a nice day.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

好啦,doppia编译到此也就结束啦! 

希望这几篇文章能帮助正在读博客的你。

doppia及作者相关介绍链接: 

http://blog.csdn.net/xizero00/article/details/43227019 

https://bitbucket.org/rodrigob/doppia

【视频开发】【计算机视觉】doppia编译之四:安装其他库、编译和运行doppia的更多相关文章

  1. windows下编译和安装boost库

    boost是一个功能强大.构造精巧.跨平台.开源并且完全免费的C++程序库. 获取方式 boost提供源码形式的安装包,可以从boost官方网站下载,目前最新版本是1.59.0. 本机上正好有boos ...

  2. [转]Linux编译和安装boost库

    1. 下载boost安装包并解压缩 到http://www.boost.org/下载boost的安装包,以boost_1_58_0.tar.gz为例 下载完成后进行解压缩: tar zxvf boos ...

  3. linux 下的两种软件安装方式 —— 源码(编译、安装),编译好的二进制(直接安装)

    我们以 GPG(加密工具)为例来说明两种安装方式的区别: 源码(Source code releases,名称中则会含有src等说明信息,tarball:source),先编译再安装 GPU 的源码地 ...

  4. CentOS8安装Geant4笔记(三):Geant4介绍、编译、安装支持Qt5界面并运行exampleB1例程显示Qt界面

    前言   上一篇,安装了Qt5环境.  本篇在服务器CentOs8.2上安装geant4软件,geant4使用Qt5来显示.   GEANT4 介绍   Geant4 是一个用于模拟粒子穿过物质的工具 ...

  5. 【视频开发】【计算机视觉】doppia编译之三:编译安装opencv库

    这里我介绍2种方法 (1)利用别人写好的脚本编译,相对来说省力一点  上Github下载别人写好的脚本文件,网址 https://github.com/jayrambhia/Install-OpenC ...

  6. C/C++ 跨平台交叉编译、静态库/动态库编译、MinGW、Cygwin、CodeBlocks使用原理及链接参数选项

    目录 . 引言 . 交叉编译 . Cygwin简介 . 静态库编译及使用 . 动态库编译及使用 . MinGW简介 . CodeBlocks简介 0. 引言 UNIX是一个注册商标,是要满足一大堆条件 ...

  7. 如何安装Eigen库和Sophus库

    * { font-family: "Tibetan Machine Uni", "sans-serif", STFangSong; outline: none ...

  8. SQLite3动态库、静态库编译

    资源准备 1.下载SQLite3源码,下载地址为https://www.sqlite.org/download.html.下载sqlite-amalgamation-3200000.zip和sqlit ...

  9. iOS - 编译WebRTC.a静态库

    编译WebRTC.a静态库 编译的方式,我看了几个帖子,什么方法都有,这里我根据我的需求,说说我的做法.我的主要目的是因为网上找不到.a模式的webrtc的静态库,都是framework,所以我才自己 ...

随机推荐

  1. LGOJP3959 宝藏

    题目链接 题目链接 题解 一开始想了一个错误的状压dp,水了40分. 这里先记录一下错误的做法: 错解: 设\(g[i,j,S]\)从\(i\)到\(j\),只经过集合\(S\)中的点的最短路,这个可 ...

  2. 《Java周边》vue开发环境搭建(windows)

    1. NodeJs 安装包下载 百度云:链接: https://pan.baidu.com/s/169TdKRLZd0dXbKSGTr8evw 提取码: th4a 复制这段内容后打开百度网盘手机App ...

  3. robot framework 笔记(三),RF安装

    背景: 本来robot framework的安装应该放在一开始写的,因写博客的时候已经装过了,恰巧重装系统又重装了一遍RF RF推荐使用python2, 使用3的话会遇到一些页面非友好的问题 需要的安 ...

  4. [Luogu 3794]签到题IV

    Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...

  5. ubuntu18.04 + python3 安装pip3

    最近在学习python 网络爬虫,正好接触到python的requests模块 我的开发环境是ubuntu18.04+python3,这个系统是默认自带了python3,且版本是python 3.6. ...

  6. Spring boot jpa 设定MySQL数据库的自增ID主键值

    内容简介 本文主要介绍在使用jpa向数据库添加数据时,如果表中主键为自增ID,对应实体类的设定方法. 实现步骤 只需要在自增主键上添加@GeneratedValue注解就可以实现自增,如下图: 关键代 ...

  7. 数据库服务器和web服务器磁盘占用查询

    对于Oracle数据库而言磁盘空间主要体现在表空间上,可使用sql语句进行查看Oracle 表空间的大小及使用情况: select sum(bytes)/1024/1024/1024 "Gb ...

  8. POJ P2251 Dungeon Master 题解

    深搜,只不过是三维的. #include<iostream> #include<cstring> #include<cstdio> #include<algo ...

  9. terraform v0.12.0 发布了

    v0.12.0 相比以前的有好多新的特性,包括语法,以及函数增强,昨天还在折腾的一个json解码的问题,直接使用 v0.12.0 就可以解决了,同时也包含了for 操作处理同时官方文档对于v0.12. ...

  10. [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)

    译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我 ...