Tree

Problem Description
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N

There are N - 1 edges numbered from 1 to N - 1.

Each node has a value and each edge has a value. The initial value is 0.

There are two kind of operation as follows:

● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.

● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.

After finished M operation on the tree, please output the value of each node and edge.

 
Input
The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.

The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.

The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.

For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)

 
Output
For each test case, print a line “Case #t:”(without quotes, t means the index of the test case) at the beginning.

The second line contains N integer which means the value of each node.

The third line contains N - 1 integer which means the value of each edge according to the input order.

 
Sample Input
2
4 2
1 2
2 3
2 4
ADD1 1 4 1
ADD2 3 4 2
4 2
1 2
2 3
1 4
ADD1 1 4 5
ADD2 3 2 4
 
Sample Output
Case #1:
1 1 0 1
0 2 2
Case #2:
5 0 0 5
0 4 0
 

题意:

  给你一棵树,n个结点

  1、将u到v之间的结点权值加k;

  2、将u到v之间的边权加k。

  输出经过修改后所有的边权和点权。

题解:

  这题线段树超时

  需要用到一个区间更新小技巧

  比如x,y这个区间+k,那么sum[x] += k, sum[y+1] -= k;

  最后统计一个前缀和就可以了

  这题读入挂超时,不用能A,格式也要注意了

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 1e3+, mod = 1e9+, inf = 2e9; int dep[N],head[N],t=,sz[N],fa[N],indexS,top[N],pos[N],son[N],idpos[N];
struct ss{int to,next,id;}e[N*];
int n;
void add(int u,int v,int id)
{e[t].to = v;e[t].next = head[u];e[t].id=id;head[u] = t++;}
void dfs(int u) {
int k = ;
sz[u] = ;
dep[u] = dep[fa[u]] + ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa[u]) continue;
fa[to] = u;
idpos[to] = e[i].id;
dfs(to);
sz[u] += sz[to];
if(sz[to] > sz[k]) k = to;
}
if(k) son[u] = k;
}
void dfs(int u,int chain) {
int k = ;
pos[u] = ++indexS;
top[u] = chain;
if(son[u] > )
dfs(son[u],chain);
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(dep[to] > dep[u] && son[u] != to)
dfs(to,to);
}
}
LL sum[N],sum2[N];
void updateL(int x,int y,int k) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
sum2[pos[top[x]]] +=k;
sum2[pos[x]+] -=k;
x = fa[top[x]];
}
if(dep[x] < dep[y]) swap(x,y);
sum2[pos[y]] +=k;
sum2[pos[x]+] -=k;
}
void updateW(int x,int y,int k) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
sum[pos[top[x]]] += k;
sum[pos[x] + ] -= k;
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x,y);
sum[pos[x] + ] += k;
sum[pos[y] + ] -= k;
}
void init() {
t = ;
memset(head,,sizeof(head));
indexS = ;fa[] = ;
for(int i = ; i <= n+; ++i) sum[i] = , sum2[i] = ;
for(int i = ; i <= n; ++i) son[i] = ,sz[i] = ;
}
int T,m,cas = ;
LL f[N];
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
init();
for(int i = ; i < n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
add(x,y,i),add(y,x,i);
}
dfs();
dfs(,);
while(m--) {
char ch[];
int x,y,k;
scanf("%s",ch);
scanf("%d%d%d",&x,&y,&k);
if(ch[] == '') {
updateL(x,y,k);
}
else if(x!=y){
updateW(x,y,k);
}
}
printf("Case #%d:\n",cas++);
for(int i = ; i <= n; ++i)
sum[i]+=sum[i-],sum2[i]+=sum2[i-];
for(int i = ; i <= n; ++i) f[idpos[i]] = sum[pos[i]];
for(int i = ; i < n; ++i)
printf("%I64d ",sum2[pos[i]]);
printf("%I64d\n",sum2[pos[n]]);
for(int i = ; i < n-; ++i) printf("%I64d ",f[i]);
if(n- > )printf("%I64d",f[n-]);
puts("");
}
return ;
}

HDU 5044 Tree 树链剖分+区间标记的更多相关文章

  1. HDU 5044 Tree --树链剖分

    题意:给一棵树,两种操作: ADD1: 给u-v路径上所有点加上值k, ADD2:给u-v路径上所有边加上k,初始值都为0,问最后每个点和每条边的值,输出. 解法:树链剖分可做,剖出来如果直接用线段树 ...

  2. HDU 5044 (树链剖分+树状数组+点/边改查)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5044 题目大意:修改链上点,修改链上的边.查询所有点,查询所有边. 解题思路: 2014上海网赛的变 ...

  3. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  4. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  5. hdu 5458 Stability(树链剖分+并查集)

    Stability Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Total ...

  6. HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  7. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  8. POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)

    题目链接:http://poj.org/problem?id=3237 一棵有边权的树,有3种操作. 树链剖分+线段树lazy标记.lazy为0表示没更新区间或者区间更新了2的倍数次,1表示为更新,每 ...

  9. HDU 5614 Baby Ming and Matrix tree 树链剖分

    题意: 给出一棵树,每个顶点上有个\(2 \times 2\)的矩阵,矩阵有两种操作: 顺时针旋转90°,花费是2 将一种矩阵替换为另一种矩阵,花费是10 树上有一种操作,将一条路经上的所有矩阵都变为 ...

随机推荐

  1. Centos 7安装Mysql5.7

    1.下载(国内镜像,比搜狐的快一点):http://mirrors.ustc.edu.cn/mysql-ftp/Downloads/MySQL-5.7/mysql-5.7.22-linux-glibc ...

  2. LeetCode(52) N-Queens II

    题目 Follow up for N-Queens problem. Now, instead outputting board configurations, return the total nu ...

  3. 【URAL 1989】 Subpalindromes(线段树维护哈希)

    Description You have a string and queries of two types: replace i'th character of the string by char ...

  4. Oracle中exit,return,continue

    记录exit和return的用法 exit用来跳出循环 loop IF V_KBP IS NULL THEN           EXIT;    END IF; end loop; return跳出 ...

  5. Leetcode 299.猜字游戏

    猜字游戏 你正在和你的朋友玩 猜数字(Bulls and Cows)游戏:你写下一个数字让你的朋友猜.每次他猜测后,你给他一个提示,告诉他有多少位数字和确切位置都猜对了(称为"Bulls&q ...

  6. B/S 开发和 C/S开发的区别

    导读:每天都从应用中心下载很多软件安装尝试,在自己的电脑上也装了很多软件,但是,就出现了一个问题,好比QQ,为什么有了APP,还要有网站应用呢?由此,结合到自己的学习,就衍生出一个问题:C/S 开发就 ...

  7. POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K       http://poj.org/problem?id=238 ...

  8. 以太坊和IPFS如何存储数据

    如何将JSON文件存储在IPFS上,并使用Oraclize访问智能合约中的数据呢? 以太坊是一个成熟的区块链,使开发人员能够创建智能合约,在区块链上执行的程序可以由交易触发.人们经常将区块链称为数据库 ...

  9. 【优先级队列】 Holedox Eating

    https://www.bnuoj.com/v3/contest_show.php?cid=9154#problem/M [Accepted] #include<iostream> #in ...

  10. 单源最短路径 Bellman_ford 和 dijkstra

    首先两个算法都是常用于 求单源最短路径 关键部分就在于松弛操作 实际上就是dp的感觉 if (dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist ...