STM32 内存管理实验
参考原文《STM32F1开发指南》
内存管理简介
内存管理,是指软件运行时对计算机内存资源的分配和使用的技术。最主要的目的是如何高效、快速的分配,并且在适当的时候释放和回收内存资源。内存管理的实现方法有很多种,但最终是要实现2个函数:malloc(内存申请)和free(内存释放)。
STM32 原子开发板采用的实现方法是:分块式内存管理。
分块式内存管理
分块式内存管理由内存池和内存管理表两部分组成。内存池和对应的内存表都分成n块,是相互对应的。
内存管理表的项值代表的意义为:当该项值为0的时候,代表对应的内存块未被占用。当该项值非零的时候,代表 该项对应的内存块已经被占用,其数值代表连续占用的内存块数。比如某项值为10,说明包含本项在内的内存块总共占用了10个分配给外部的某个指针。
内存分配方向如图所示,是从顶-->底的方向分配的。首先从顶端开始找空内存;当内存管理初始化的时候,内存表全部清零,表示没有任何内存块被占用。
分配原理
当指针 p 调用 malloc 申请内存的时候,先判断 p 要分配的内存块数m,然后从第 n 项开始,向下查找,直到找到m块连续的空内存块(即对应内存管理表项为0),然后将这 m 个内存管理表项的值都设置为 m(标记被占用),最后把这个空内存块的地址返回给指针p,完成一次分配。注意,当内存不够的时候,则返回 NULL 给 p,表示分配失败。
释放原理
当申请的内存用完,需要释放的时候,调用free函数实现。 free 函数先判断 p 指向的内存地址所对应的内存块,然后找到对应的内存管理表项目,得到 p 所占用的内存块数目m(内存管理表项目的值就是所分配内存块的数目),将这m个内存管理表项目的值都清零,标记释放完成。
源码
//内存池(32字节对齐)
__align(32) u8 mem1base[MEM1_MAX_SIZE]; //内部SRAM内存池
__align(32) u8 mem2base[MEM2_MAX_SIZE] __attribute__((at(0X68000000))); //外部SRAM内存池
//内存管理表
u16 mem1mapbase[MEM1_ALLOC_TABLE_SIZE]; //内部SRAM内存池MAP
u16 mem2mapbase[MEM2_ALLOC_TABLE_SIZE] __attribute__((at(0X68000000+MEM2_MAX_SIZE))); //外部SRAM内存池MAP
//内存管理参数
const u32 memtblsize[SRAMBANK]={MEM1_ALLOC_TABLE_SIZE,MEM2_ALLOC_TABLE_SIZE}; //内存表大小
const u32 memblksize[SRAMBANK]={MEM1_BLOCK_SIZE,MEM2_BLOCK_SIZE}; //内存分块大小
const u32 memsize[SRAMBANK]={MEM1_MAX_SIZE,MEM2_MAX_SIZE}; //内存总大小
//内存管理控制器
struct _m_mallco_dev mallco_dev=
{
my_mem_init, //内存初始化
my_mem_perused, //内存使用率
mem1base,mem2base, //内存池
mem1mapbase,mem2mapbase, //内存管理状态表
0,0, //内存管理未就绪
};
//复制内存
//*des:目的地址
//*src:源地址
//n:需要复制的内存长度(字节为单位)
void mymemcpy(void *des,void *src,u32 n)
{
u8 *xdes=des;
u8 *xsrc=src;
while(n--)*xdes++=*xsrc++;
}
//设置内存
//*s:内存首地址
//c :要设置的值
//count:需要设置的内存大小(字节为单位)
void mymemset(void *s,u8 c,u32 count)
{
u8 *xs = s;
while(count--)*xs++=c;
}
//内存管理初始化
//memx:所属内存块
void my_mem_init(u8 memx)
{
mymemset(mallco_dev.memmap[memx], 0, memtblsize[memx]*2);//内存状态表数据清零
mymemset(mallco_dev.membase[memx], 0,memsize[memx]); //内存池所有数据清零
mallco_dev.memrdy[memx]=1; //内存管理初始化OK
}
//获取内存使用率
//memx:所属内存块
//返回值:使用率(0~100)
u8 my_mem_perused(u8 memx)
{
u32 used=0;
u32 i;
for(i=0;i<memtblsize[memx];i++)
{
if(mallco_dev.memmap[memx][i])used++;
}
return (used*100)/(memtblsize[memx]);
}
//内存分配(内部调用)
//memx:所属内存块
//size:要分配的内存大小(字节)
//返回值:0XFFFFFFFF,代表错误;其他,内存偏移地址
u32 my_mem_malloc(u8 memx,u32 size)
{
signed long offset=0;
u32 nmemb; //需要的内存块数
u32 cmemb=0; //连续空内存块数
u32 i;
if(!mallco_dev.memrdy[memx])mallco_dev.init(memx);//未初始化,先执行初始化
if(size==0)return 0XFFFFFFFF;//不需要分配
nmemb=size/memblksize[memx]; //获取需要分配的连续内存块数
if(size%memblksize[memx])nmemb++;
for(offset=memtblsize[memx]-1;offset>=0;offset--)//搜索整个内存控制区
{
if(!mallco_dev.memmap[memx][offset])cmemb++;//连续空内存块数增加
else cmemb=0; //连续内存块清零
if(cmemb==nmemb) //找到了连续nmemb个空内存块
{
for(i=0;i<nmemb;i++) //标注内存块非空
{
mallco_dev.memmap[memx][offset+i]=nmemb;
}
return (offset*memblksize[memx]);//返回偏移地址
}
}
return 0XFFFFFFFF;//未找到符合分配条件的内存块
}
//释放内存(内部调用)
//memx:所属内存块
//offset:内存地址偏移
//返回值:0,释放成功;1,释放失败;
u8 my_mem_free(u8 memx,u32 offset)
{
int i;
if(!mallco_dev.memrdy[memx])//未初始化,先执行初始化
{
mallco_dev.init(memx);
return 1;//未初始化
}
if(offset<memsize[memx])//偏移在内存池内.
{
int index=offset/memblksize[memx]; //偏移所在内存块号码
int nmemb=mallco_dev.memmap[memx][index]; //内存块数量
for(i=0;i<nmemb;i++) //内存块清零
{
mallco_dev.memmap[memx][index+i]=0;
}
return 0;
}else return 2;//偏移超区了.
}
//释放内存(外部调用)
//memx:所属内存块
//ptr:内存首地址
void myfree(u8 memx,void *ptr)
{
u32 offset;
if(ptr==NULL)return;//地址为0.
offset=(u32)ptr-(u32)mallco_dev.membase[memx]; // 计算当前指针在内存块中的偏移地址
my_mem_free(memx,offset); //释放内存
}
//分配内存(外部调用)
//memx:所属内存块
//size:内存大小(字节)
//返回值:分配到的内存首地址.
void *mymalloc(u8 memx,u32 size)
{
u32 offset;
offset=my_mem_malloc(memx,size);
if(offset==0XFFFFFFFF)return NULL;
else return (void*)((u32)mallco_dev.membase[memx]+offset);
}
//重新分配内存(外部调用)
//memx:所属内存块
//*ptr:旧内存首地址
//size:要分配的内存大小(字节)
//返回值:新分配到的内存首地址.
void *myrealloc(u8 memx,void *ptr,u32 size)
{
u32 offset;
offset=my_mem_malloc(memx,size);
if(offset==0XFFFFFFFF)return NULL;
else
{
mymemcpy((void*)((u32)mallco_dev.membase[memx]+offset),ptr,size); //拷贝旧内存内容到新内存
myfree(memx,ptr); //释放旧内存
return (void*)((u32)mallco_dev.membase[memx]+offset); //返回新内存首地址
}
}
通过内存管理控制器 malloc_dev 结构体实现对两个内存池的管理控制。
//内存管理控制器
struct _m_mallco_dev
{
void (*init)(u8); //初始化
u8 (*perused)(u8); //内存使用率
u8 *membase[SRAMBANK]; //内存池 管理SRAMBANK个区域的内存
u16 *memmap[SRAMBANK]; //内存管理状态表
u8 memrdy[SRAMBANK]; //内存管理是否就绪
};
extern struct _m_mallco_dev mallco_dev; //在mallco.c里面定义
//内存管理控制器
struct _m_mallco_dev mallco_dev=
{
my_mem_init, //内存初始化
my_mem_perused, //内存使用率
mem1base,mem2base, //内存池
mem1mapbase,mem2mapbase, //内存管理状态表
0,0, //内存管理未就绪
};
以下是内存池和内存管理表的定义:
//定义两个内存池
#define SRAMIN 0 //内部内存池
#define SRAMEX 1 //外部内存池
#define SRAMBANK 2 //定义支持的SRAM块数.
//mem1内存参数设定.mem1完全处于内部SRAM里面.
#define MEM1_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM1_MAX_SIZE 40*1024 //最大管理内存 40K
#define MEM1_ALLOC_TABLE_SIZE MEM1_MAX_SIZE/MEM1_BLOCK_SIZE //内存表大小
//mem2内存参数设定.mem2的内存池处于外部SRAM里面
#define MEM2_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM2_MAX_SIZE 960 *1024 //最大管理内存960K
#define MEM2_ALLOC_TABLE_SIZE MEM2_MAX_SIZE/MEM2_BLOCK_SIZE //内存表大小
定义了两个内存池,一个是内部内存池,一个是外部内存池,在 mallo.c 文件中有对内存池的划分:
//内存池(32字节对齐)
__align(32) u8 mem1base[MEM1_MAX_SIZE]; //内部SRAM内存池
__align(32) u8 mem2base[MEM2_MAX_SIZE] __attribute__((at(0X68000000))); //外部SRAM内存池
//内存管理表
u16 mem1mapbase[MEM1_ALLOC_TABLE_SIZE]; //内部SRAM内存池MAP
u16 mem2mapbase[MEM2_ALLOC_TABLE_SIZE] __attribute__((at(0X68000000+MEM2_MAX_SIZE))); //外部SRAM内存池MAP
//内存管理参数
const u32 memtblsize[SRAMBANK]={MEM1_ALLOC_TABLE_SIZE,MEM2_ALLOC_TABLE_SIZE}; //内存表大小
const u32 memblksize[SRAMBANK]={MEM1_BLOCK_SIZE,MEM2_BLOCK_SIZE}; //内存分块大小
const u32 memsize[SRAMBANK]={MEM1_MAX_SIZE,MEM2_MAX_SIZE}; //内存总大小
疑问外部内存池指定地址是 0X68000000,是从哪里得出来的这个地址?
内部内存则由编译器自动分配。
此部分代码的核心函数为 mem_malloc 和 mem_free,这两个函数只是内部调用,外部调用则使用 mymalloc 和 myfree 两个函数。
我的笔记###
必须要弄懂 malloc_dev 的定义,它在程序内部使用,对用户是透明的,必须要知道它管理这几块内存池,及其对应的管理表,弄懂 my_mem_malloc 和 my_mem_free 函数,这两个函数都是内部使用的。
STM32 内存管理实验的更多相关文章
- ChCore Lab2 内存管理 实验笔记
本文为上海交大 ipads 研究所陈海波老师等人所著的<现代操作系统:原理与实现>的课程实验(LAB)的学习笔记的第二篇.所有章节的笔记可在此处查看:chcore | 康宇PL's Blo ...
- 基于STM32F429的内存管理
1.内存管理介绍 内存管理,是指软件运行时对计算机内存资源的分配和使用的技术.其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源. 内存管理的实现方法有很多种,他们其实最终都是要 ...
- 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(终)-配合内存管理来遍历SD卡
[STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 [STM3 ...
- 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(八)-认识内存管理
[STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 [STM3 ...
- STM32的内存管理
ref:https://www.cnblogs.com/leo0621/p/9977932.html 这里针对STM32F407芯片+1M外部内存的内存管理!(全篇是个人愚见,如果错误,请不吝指出!) ...
- 关于Qt半自动内存管理的思考及实验
一时兴起,对Qt感了兴趣,决心想要研究一下. 按网上资料配好环境,Windows 7 64bit + Qt 5.3.1 + VS2010. 根据<C++ GUI Qt4 编程>这本书,写出 ...
- FreeRTOS 动态内存管理
以下转载自安富莱电子: http://forum.armfly.com/forum.php 本章节为大家讲解 FreeRTOS 动态内存管理,动态内存管理是 FreeRTOS 非常重要的一项功能,前面 ...
- Linux堆内存管理深入分析(上)
Linux堆内存管理深入分析(上半部) 作者:走位@阿里聚安全 0 前言 近年来,漏洞挖掘越来越火,各种漏洞挖掘.利用的分析文章层出不穷.从大方向来看,主要有基于栈溢出的漏洞利用和基于堆溢出的漏洞 ...
- 理解 iOS 的内存管理
远古时代的故事 那些经历过手工管理内存(MRC)时代的人们,一定对 iOS 开发中的内存管理记忆犹新.那个时候大约是 2010 年,国内 iOS 开发刚刚兴起,tinyfool 大叔的大名已经如雷贯耳 ...
随机推荐
- 利用Oracle内置分析函数进行高效统计汇总
分析函数是Oracle从8.1.6开始引入的一个新的概念,为我们分析数据提供了一种简单高效的处理方式.在分析函数出现以前,我们必须使用自联查询,子查询或者内联视图,甚至复杂的存储过程实现的语句,现 ...
- mybaties中,模糊查询的几种写法
模糊查询: 工作中用到,写三种用法吧,第四种为大小写匹配查询 1. sql中字符串拼接 SELECT * FROM tableName WHERE name LIKE CONCAT(CONCAT('% ...
- openstack dnsmasq彭祖
Openstack dnsmasq配置域名解析,openstackdnsmasq vi /etc/nova/nova.conf 在[DEFAULT]添加 dnsmasq_config_file=/et ...
- Spring MVC的学习笔记
基于注解形式配置Spring MVC 一.注册并初始化DispatcherServlet,由Servlet容器自动检测并启动 注解形式 public class MyWebApplicationIni ...
- vue 加载文件,省略后缀后的加载顺序
Vue使用import ... from ...来导入组件,库,变量等.而from后的来源可以是js,vue,json.这个是在webpack.base.conf.js中设置的: module.exp ...
- bzoj 1026: [SCOI2009]windy数【数位dp】
忘记limit不能记WA了一发-- 典型数位dp,变成work(r)-work(l-1),然后dfs的时候记录w当前位置,la上一个数选的什么,lm当前位是否有上限,ok当前位是否可以不考虑差大于等于 ...
- vs2017 + miniUI 后端框架使用
vs2017 + miniUI 后端框架使用 上miniUI官网直接下载框架.http://www.miniui.com/ 此框架使用说明很清楚. 2.1.vs2017创建安装miniUI后端框架 ...
- [C和指针] 1-快速上手、2-基本概念、3-数据
第1章 快速上手 1.1.1 空白和注释 程序的空白的作用: 空行将程序的不同部分分割开来:制表符缩进语句,可以更好地显示程序的结构等等. 软件最大的开销并非在于编写,而是在于维护,所以需 ...
- C# 类型转换方法
C# 类型转换方法 C# 提供了下列内置的类型转换方法: 序号 方法 & 描述 1 ToBoolean 如果可能的话,把类型转换为布尔型. 2 ToByte 把类型转换为字节类型. 3 ToC ...
- 暴力+构造 Codeforces Round #283 (Div. 2) C. Removing Columns
题目传送门 /* 题意:删除若干行,使得n行字符串成递增排序 暴力+构造:从前往后枚举列,当之前的顺序已经正确时,之后就不用考虑了,这样删列最小 */ /*********************** ...