Regular Bridge

An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.

Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.

Input

The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.

Output

Print "NO" (without quotes), if such graph doesn't exist.

Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.

The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.

Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ n, a ≠ b), that mean that there is an edge connecting the vertices a and b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.

The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).

Example

Input
1
Output
YES
2 1
1 2

Note

In the sample from the statement there is a suitable graph consisting of two vertices, connected by a single edge.

题意是要搞出个无向图,至少包含一条边是桥,而且每个点度数都是k

显然方便的构造是桥的两边是对称的

假如有两个联通块A,B通过一个桥联通,那么A和B之间除了桥以外不能有其他边。

考虑A块,假设有n个点,除去有一个点连出去一个桥,A块中其他边带来的度数之和应当是nk-1。

显然一条边一次带来2的度数,那么nk-1是偶数,nk是奇数,n、k都是奇数。

因此对于k是偶数的肯定无解

然后就是瞎鸡儿构造时间(不过为什么我看标答的点比我构造的少这么多)

假设A块的s点连了桥,那么s还需要连恰好k-1个点,标号成1~k-1,因为k是奇数所以k-1是偶数

然后对k-1个点两两分组,每组两个点a,b现在都只和s连上,再新建k-1个点,a和b都分别和k-1个新点连上,这样a和b度数都是k

新的k-1个点再两两连上变成完全图,这样每个新点都和k-2个其他新点连上,加上a和b恰好度数为k

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define mkp(a,b) make_pair(a,b)
#define pi 3.1415926535897932384626433832795028841971
#define mod 100007
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int k,n,m;
inline void put(int a,int b)
{
printf("%d %d\n%d %d\n",a,b,a+n/,b+n/);
}
int main()
{
k=read();
if (k%==){puts("NO");return ;}
puts("YES");
n=*(k+(k-)/*(k-));m=*(k-+(k-)/*((k-)+k*(k-)/))+;
printf("%d %d\n1 %d\n",n,m,+n/); for (int i=;i<=k;i++)put(,i);
int cnt=k;
for (int i=;i<=(k-)/;i++)
{
for (int j=;j<k;j++)
{
put(+i,++cnt);
put(+(k-)/+i,cnt);
}
for (int j=cnt-k+;j<=cnt;j++)
for (int l=j+;l<=cnt;l++)
put(j,l);
}
}

cf 550D

cf550D Regular Bridge的更多相关文章

  1. cf550D. Regular Bridge(构造)

    题意 给出一个$k$,构造一个无向图,使得每个点的度数为$k$,且存在一个桥 Sol 神仙题 一篇写的非常好的博客:http://www.cnblogs.com/mangoyang/p/9302269 ...

  2. D. Regular Bridge 解析(思維、圖論)

    Codeforce 550 D. Regular Bridge 解析(思維.圖論) 今天我們來看看CF550D 題目連結 題目 給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每 ...

  3. cf#306D. Regular Bridge(图论,构图)

    D. Regular Bridge time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #306 (Div. 2) D. Regular Bridge 构造

    D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

  5. Codeforces 550D —— Regular Bridge——————【构造】

     Regular Bridge time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  6. Codeforces 550 D. Regular Bridge

    \(>Codeforces \space 550 D. Regular Bridge<\) 题目大意 :给出 \(k\) ,让你构造出一张点和边都不超过 \(10^6\) 的无向图,使得每 ...

  7. 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)

    题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...

  8. codeforces #550D Regular Bridge 构造

    题目大意:给定k(1≤k≤100),要求构造一张简单无向连通图,使得存在一个桥,且每一个点的度数都为k k为偶数时无解 证明: 将这个图缩边双,能够得到一棵树 那么一定存在一个叶节点,仅仅连接一条桥边 ...

  9. Codeforces Round #306 (Div. 2)

    A. Two Substrings You are given string s. Your task is to determine if the given string s contains t ...

随机推荐

  1. JS 一个页面关闭多个页面

    <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head><meta ...

  2. vue+element ui项目总结点(二)table合计栏目,按照起始年份--截止年份 插入数据并向后追加数据以最后一条年份+1

    1.oninput 事件在用户输入时触发; <template> <div class="test_box"> <p>hell,你好</p ...

  3. vijos 1524 最小监视代价

    背景 看到Vijos上此类型的题目较少,特地放一道上来给大家练练. 描述 由于yxy小朋友做了一些不该做的事,他被jzp关进了一个迷宫里.由于jzp最近比较忙,疏忽大意了一些,yxy可以在迷宫中任意走 ...

  4. (转)SpringMVC学习(五)——SpringMVC的参数绑定

    http://blog.csdn.net/yerenyuan_pku/article/details/72511611 SpringMVC中的参数绑定还是蛮重要的,所以单独开一篇文章来讲解.本文所有案 ...

  5. java script DOM BOM

    onclick        当用户点击某个对象时调用的事件句柄.ondblclick     当用户双击某个对象时调用的事件句柄. onfocus        元素获得焦点.            ...

  6. objdump命令

    0x00 objdump命令是Linux下的反汇编目标文件或者可执行文件的命令 0x01 objdump -f   显示test的文件头信息 $ objdump -f levellevel: file ...

  7. Ibatis入门基本语法

    1.       Ibatis是开源软件组织Apache推出的一种轻量级的对象关系映射(ORM)框架,和Hibernate.Toplink等在java编程的对象持久化方面深受开发人员欢迎. 对象关系映 ...

  8. 697. Degree of an Array@python

    Given a non-empty array of non-negative integers nums, the degree of this array is defined as the ma ...

  9. GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)

    GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 GSS4 - Can you answer these qu ...

  10. Mysql的慢日志

    一.开启慢查询日志,可以让MySQL记录下查询超过指定时间的语句,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能. 二.慢日志参数: slow_query_log 慢查询开启状态slow_qu ...