这个题的想法很好想,就是进行排序之后直接检查每个点的上下左右是否有黑点就行.但是直接枚举显然不行,那怎么办呢?我们就用树状数组维护扫描线,把每排左右点看成一条线覆盖,然后从下往上扫,遇到下加一,遇到上减一并记录答案.这样用扫描线维护就行了.

题干:

Description
无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点)。每秒钟,所有内部白点同时变黑,直到不存在内部白点为止。你的任务是统计最后网格中的黑点个数。 内部白点的定义:一个白色的整点P(x,y)是内部白点当且仅当P在水平线的左边和右边各至少有一个黑点(即存在x1 < x < x2使得(x1,y)和(x2,y)都是黑点),且在竖直线的上边和下边各至少有一个黑点(即存在y1 < y < y2使得(x,y1)和(x,y2)都是黑点)。
Input
输入第一行包含一个整数n,即初始黑点个数。以下n行每行包含两个整数(x,y),即一个黑点的坐标。没有两个黑点的坐标相同,坐标的绝对值均不超过109。
Output
输出仅一行,包含黑点的最终数目。如果变色过程永不终止,输出-。
Sample Input -
-
Sample Output 数据范围
%的数据满足:n < =
%的数据满足:n < =
%的数据满足:n < =

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
struct point
{
int x,y;
}a[];
struct seg
{
int k,x,y,r;
}s[];
int n;
int hsh[],cnt = ;
int tr[],ans = ;
bool cmp1(point a,point b)
{
if(a.x == b.x)
return a.y < b.y;
else
return a.x < b.x;
}
bool cmp2(point a,point b)
{
if(a.y == b.y)
return a.x < b.x;
else
return a.y < b.y;
}
bool cmp3(seg a,seg b)
{
if(a.y == b.y)
return a.k < b.k;
else
return a.y < b.y;
}
int find(int x)
{
int l = ,r = n,mid;
while(l <= r)
{
int mid = (l + r) >> ;
if(hsh[mid] < x)
l = mid + ;
else if(hsh[mid] > x)
r = mid - ;
else return mid;
}
}
void insert(int k,int l,int r,int t)
{
if(!k)
{
s[++cnt].x = find(l);
s[cnt].r = find(r);
s[cnt].y = t;
}
else
{
s[++cnt].x = find(t);
s[cnt].y = l;
s[cnt].k = ;
s[++cnt].x = find(t);
s[cnt].y = r;
s[cnt].k = -;
}
}
int lowbit(int x)
{
return x & -x;
}
void build()
{
sort(a + ,a + n + ,cmp1);
duke(i,,n)
{
if(a[i].x == a[i - ].x)
insert(,a[i - ].y,a[i].y,a[i].x);
}
sort(a + ,a + n + ,cmp2);
duke(i,,n)
{
if(a[i].y == a[i - ].y)
insert(,a[i - ].x,a[i].x,a[i].y);
}
}
void update(int x,int y)
{
while(x <= n)
{
tr[x] += y;
x += lowbit(x);
}
}
int ask(int x)
{
int s = ;
while(x)
{
s += tr[x];
x -= lowbit(x);
}
return s;
}
void work()
{
duke(i,,cnt)
{
if(!s[i].k)
ans += ask(s[i].r - ) - ask(s[i].x);
else
update(s[i].x,s[i].k);
}
}
int main()
{
read(n);
duke(i,,n)
{
read(a[i].x);
read(a[i].y);
hsh[i] = a[i].x;
}
sort(hsh + ,hsh + n + );
build();
sort(s + ,s + cnt + ,cmp3);
work();
printf("%d\n",ans + n);
return ;
}
/*
4
0 2
2 0
-2 0
0 -2
*/

B1818 [Cqoi2010]内部白点 树状数组的更多相关文章

  1. BZOJ 1818: [Cqoi2010]内部白点(树状数组)

    传送门 解题思路 首先一定不可能有\(-1\)的情况,因为新产生的黑点不会造成任何贡献,它的各个方面都是不优的.那么只需要统计一遍答案,首先要将横坐标相同的两个点看成一条竖线,纵坐标相同的点看成一条横 ...

  2. Bzoj1818: [Cqoi2010]内部白点 && Tyvj P2637 内部白点 扫描线,树状数组,离散化

    1818: [Cqoi2010]内部白点 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 704  Solved: 344[Submit][Status] ...

  3. 【BZOJ1818】[CQOI2010]内部白点(树状数组,扫描线)

    [BZOJ1818][CQOI2010]内部白点(树状数组,扫描线) 题面 BZOJ 题解 不难发现\(-1\)就是在搞笑的. 那么对于每一行,我们显然可以处理出来最左和最右的点,那么等价于我们在横着 ...

  4. 【BZOJ1818】[Cqoi2010]内部白点 扫描线+树状数组

    [BZOJ1818][Cqoi2010]内部白点 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变 ...

  5. BZOJ_1818_[Cqoi2010]内部白点 _扫描线+树状数组

    BZOJ_1818_[Cqoi2010]内部白点 _扫描线+树状数组 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟 ...

  6. 【BZOJ】1818: [Cqoi2010]内部白点(树状数组+离散+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1818 这一题一开始我就看错了,bzoj的那个绝对值109简直坑人,应该是10^9,我直接写了个暴力. ...

  7. BZOJ 1818: [Cqoi2010]内部白点 扫描线+树状数组

    问题转化为求每一个极长横线段与极长纵线段的交点个数. 这个东西用扫描线+树状数组维护一下就可以了. code: #include <cstdio> #include <algorit ...

  8. bzoj1818 内部白点(好题) 离散化+树状数组

    题目传送门 题意:给出很多黑点,当一个坐标上下左右都有黑点时,这个点也被染成黑色,问最后黑点的数量. 思路:首先,一个很显然的结论,不可能出现无限染色的情况.所以不会输出-1,当n为0或者1时,答案就 ...

  9. bzoj 1818 [CQOI 2010] 内部白点 - 扫描线 - 树状数组

    题目传送门 快速的列车 慢速的列车 题目大意 一个无限大的方格图内有$n$个黑点.问有多少个位置上下左右至少有一个黑点或本来是黑点. 扫描线是显然的. 考虑一下横着的线段,取它两个端点,横坐标小的地方 ...

随机推荐

  1. 初步认识MVC

     一丶路由(One) 自定义路由,静态路由,动态路由,组合路由 routes.MapRoute 二丶Action向View传值的四种方式(ViewData.ViewBag.TempData.Model ...

  2. 第三节:执行一些EF的增删改查

    针对两表操作 一丶增加 #region 05-增加操作 /// <summary> /// 05-增加操作 /// </summary> /// <param name= ...

  3. eBPF监控工具bcc系列五工具funccount

    eBPF监控工具bcc系列五工具funccount funccount函数可以通过匹配来跟踪函数,tracepoints 或USDT探针.例如所有以vfs_ 开头的内核函数. ./funccount ...

  4. 'dict' object is not callable

    今天学py的map函数时,由于在上面定义了一个dict类型的变量(取的名是map),所以编译后报了这么一个错,哎,以后学py命名要小心了

  5. JAVA基础——链表结构之单链表

    链表:一种数据存储结构.学链表首先要搞懂数组,按朋友的话说,数组和链表的关系就相当于QQ2008和QQ2009. 除非要通过索引频繁访问各个数据,不然大多数情况下都可以用链表代替数组. 链表部分主要要 ...

  6. I Think I Need a Houseboat POJ - 1005(数学)

    题目大意 在二维坐标内选定一个点,问你当洪水以半圆形扩散且每年扩散50单位,哪一年这个点被被洪水侵蚀? 解法 代码 #include <iostream> #include <cst ...

  7. Linux 安装 MySQL 详解(rpm 包)

    说明:Linux 系统中软件的安装在 root 用户下进行,此安装方式为 rpm 包方式,安装的版本为:MySQL-5.6.25-1.linux_glibc2.5.x86_64.rpm-bundle. ...

  8. response对象处理HTTP文件头(禁用缓存、设置页面自动刷新、定时跳转网页)

    response对象处理HTTP文件头 制作人:全心全意 禁用缓存 在默认情况下,浏览器将会对显示的网页内容进行缓存.这样,当用户再次访问相关网页时,浏览器会判断网页是否有变化,如果没有变化则直接显示 ...

  9. 来说一说chrome扩展和chrome插件到底有什么区别?

    想讨论chrome扩展和chrome插件区别这个话题很久了!但是迟迟没有写.因为我自己也没有搞清楚这两者之间的区别!回想当初是因为需要寻找番羽墙插件才想到去搜索到chrome插件. 想讨论chrome ...

  10. Django 命令行调用模版渲染

    首先我们需要进入 Django 的 shell python manage.py shell 渲染模版中的 name from django.template import Context,Templ ...