Leetcode 319.灯泡开关
灯泡开关
初始时有 n 个灯泡关闭。第 1 轮,你打开所有的灯泡。第 2 轮,每两个灯泡你关闭一次。第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。第 i 轮,每 i 个灯泡切换一次开关。对于第 n 轮,你只切换最后一个灯泡的开关。找出 n 轮后有多少个亮着的灯泡。
示例:
输入: 3
输出: 1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭].
你应该返回 1,因为只有一个灯泡还亮着。
A bulb ends up on iff it is switched an odd number of times.
Bulb i is switched in round d iff d divides i. So bulb i ends up on iff it has an odd number of >divisors.
Divisors come in pairs, like i=12 has divisors 1 and 12, 2 and 6, and 3 and 4. Except if i is a >square, like 36 has divisors 1 and 36, 2 and 18, 3 and 12, 4 and 9, and double divisor 6. So bulb >i ends up on iff and only if i is a square.
So just count the square numbers.
大概解释一下,当一个灯泡被执行偶数次switch操作时它是关着的,当被执行奇数次switch操作时它是开着的,那么这题就是要找出哪些编号的灯泡会被执行奇数次操作。
现在假如我们执行第i
次操作,即从编号i开始对编号每次+i进行switch操作,对于这些灯来说,
如果其编号j(j=1,2,3,⋯,n)能够整除i,则编号j的灯需要执switch操作。
具备这样性质的i是成对出现的,比如:
j=12时,编号为12的灯,在第1次,第12次;第2次,第6次;第3次,第4次一定会被执行Switch操作,这样的话,编号为12的等肯定为灭。
但是当完全平方数36就不一样了,因为他有一个特殊的因数6,这样当i=6时,只能被执行一次Switch操作,这样推出,完全平方数一定是亮着的,所以本题的关键在于找完全平方数的个数。
class Solution {
public int bulbSwitch(int n) {
return (int) Math.sqrt(n);
}
}
Leetcode 319.灯泡开关的更多相关文章
- Java实现 LeetCode 319 灯泡开关
319. 灯泡开关 初始时有 n 个灯泡关闭. 第 1 轮,你打开所有的灯泡. 第 2 轮,每两个灯泡你关闭一次. 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭).第 i 轮,每 ...
- Leetcode 672.灯泡开关II
灯泡开关II 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 . ...
- Java实现 LeetCode 672 灯泡开关 Ⅱ(数学思路问题)
672. 灯泡开关 Ⅱ 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2 ...
- leetcode 319 灯泡问题
例子:1-9 1的因子1 2 1,2 3 1,,3 4 1,2,4 5 1,5 6 1,2,3,6 7 1,7 8 ...
- LeetCode:灯泡开关2
题目 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 ..., ...
- [Leetcode] 第319题 灯泡开关
一.题目描述 初始时有 n 个灯泡关闭. 第 1 轮,你打开所有的灯泡. 第 2 轮,每两个灯泡你关闭一次. 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭).第 i 轮,每 i ...
- [LeetCode]319. Bulb Switcher灯泡开关
智商压制的一道题 这个题有个数学定理: 一般数(非完全平方数)的因子有偶数个 完全平凡数的因子有奇数个 开开关的时候,第i个灯每到它的因子一轮的时候就会拨动一下,也就是每个灯拨动的次数是它的因子数 而 ...
- 319 Bulb Switcher 灯泡开关
初始时有 n 个灯泡关闭. 第 1 轮,你打开所有的灯泡. 第 2 轮,每两个灯泡切换一次开关. 第 3 轮,每三个灯泡切换一次开关(如果关闭,则打开,如果打开则关闭).对于第 i 轮,你每 i 个灯 ...
- [LeetCode] Bulb Switcher 灯泡开关
There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every ...
随机推荐
- Vue不兼容IE8原因以及Object.defineProperty详解
Vue不兼容IE8原因以及Object.defineProperty详解 原因概述: Vue.js使用了IE8不能模拟的ECMAScript5特性. Vue.js支持所有兼容ES5的浏览器. Vue将 ...
- 题解报告:hdu 1520 Anniversary party(树形dp入门)
Problem Description There is going to be a party to celebrate the 80-th Anniversary of the Ural Stat ...
- hibernate Day1 案例代码
1.创建Person类 package com.icss.pojo; public class Person { private int uid; private String uname; priv ...
- Collection2
- 清理xcode缓存
code版本:8.3.3 iOS版本:10.3.2 移除 Xcode 运行安装 APP 产生的缓存文件(DerivedData) 只要重新运行Xcode就一定会重新生成,而且会随着运行程序的增多,占用 ...
- iOS圆形图片裁剪,原型图片外面加一个圆环
/** * 在圆形外面加一个圆环 */ - (void)yuanHuan{ //0.加载图片 UIImage *image = [UIImage imageNamed:@"AppIcon1 ...
- win7系统 windows update 总是更新失败解决方法:
win7系统 windows update 总是更新失败解决方法: 右键单击桌面“计算机”选择“管理“. 进到“计算机管理“窗口后,展开”服务和应用程序“并双击”服务“,在窗口右侧按照名称找到”Win ...
- UVA 10900 So you want to be a 2n-aire? 2元富翁 (数学期望,贪心)
题意:你一开始有1元钱,接下来又n<=30个问题,只需答对1个问题手上的钱就翻倍,最多答对n个,得到的钱是2n.而每个问题答对的概率是[t,1]之间平均分布,那么问最优情况下得到奖金的期望值是多 ...
- 洛谷 大牛分站 P1000 超级玛丽游戏
题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级玛丽中的一个场景. *** ...
- 【整理】 vue-cli 打包后显示favicon.ico小图标
vue-cli 打包后显示favicon.ico小图标 https://www.cnblogs.com/mmzuo-798/p/9285013.html