大数据学习——点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上
点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上
1需求说明
点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上
2需求分析
一般上传文件都是在凌晨24点操作,由于很多种类的业务数据都要在晚上进行传输,为了减轻服务器的压力,避开高峰期。
如果需要伪实时的上传,则采用定时上传的方式
3技术分析
HDFS SHELL: hadoop fs –put xxxx.log /data 还可以使用 Java Api
满足上传一个文件,不能满足定时、周期性传入。
定时调度器:
Linux crontab
crontab -e
*/5 * * * * $home/bin/command.sh //五分钟执行一次
系统会自动执行脚本,每5分钟一次,执行时判断文件是否符合上传规则,符合则上传
4实现流程
4.1日志产生程序
日志产生程序将日志生成后,产生一个一个的文件,使用滚动模式创建文件名。
日志生成的逻辑由业务系统决定,比如在log4j配置文件中配置生成规则,如:当xxxx.log 等于10G时,滚动生成新日志
log4j.logger.msg=info,msg log4j.appender.msg=cn.maoxiangyi.MyRollingFileAppender log4j.appender.msg.layout=org.apache.log4j.PatternLayout log4j.appender.msg.layout.ConversionPattern=%m%n log4j.appender.msg.datePattern='.'yyyy-MM-dd log4j.appender.msg.Threshold=info log4j.appender.msg.append=true log4j.appender.msg.encoding=UTF-8 log4j.appender.msg.MaxBackupIndex=100 log4j.appender.msg.MaxFileSize=10GB log4j.appender.msg.File=/home/hadoop/logs/log/access.log
细节:
1、 如果日志文件后缀是1\2\3等数字,该文件满足需求可以上传的话。把该文件移动到准备上传的工作区间。
2、 工作区间有文件之后,可以使用hadoop put命令将文件上传。
阶段问题:
1、 待上传文件的工作区间的文件,在上传完成之后,是否需要删除掉。
4.2伪代码
使用ls命令读取指定路径下的所有文件信息,
ls | while read line
//判断line这个文件名称是否符合规则
if line=access.log.* (
将文件移动到待上传的工作区间
)
//批量上传工作区间的文件
hadoop fs –put xxx
脚本写完之后,配置linux定时任务,每5分钟运行一次。
5代码实现
代码第一版本,实现基本的上传功能和定时调度功能
代码第二版本:增强版V2(基本能用,还是不够健全)
6效果展示及操作步骤
1、日志收集文件收集数据,并将数据保存起来,效果如下:
2、上传程序通过crontab定时调度
3、程序运行时产生的临时文件
4、Hadoo hdfs上的效果
大数据学习——点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上的更多相关文章
- 大数据学习:storm流式计算
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的, ...
- 大数据学习——mapreduce运营商日志增强
需求 1.对原始json数据进行解析,变成普通文本数据 2.求出每个人评分最高的3部电影 3.求出被评分次数最多的3部电影 数据 https://pan.baidu.com/s/1gPsQXVYSQE ...
- 大数据学习总结(7)we should...
大数据场景一.各种标签查询 查询要素:人.事.物.单位 查询范围:A范围.B范围.... 查询结果:pic.name.data from 1.痛点:对所有文本皆有实时查询需求2.难点:传统SQL使用W ...
- 【Spark】通过Spark实现点击流日志分析
文章目录 数据大致内容及格式 统计PV(PageViews) 统计UV(Unique Visitor) 求取TopN 数据大致内容及格式 194.237.142.21 - - [18/Sep/2013 ...
- 大数据学习之Hadoop快速入门
1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效 ...
- 大数据学习——Hadoop第一天
1.1 什么是HADOOP HADOOP是apache旗下的一套开源软件平台 HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理 HADOOP的核心组件有 HD ...
- 大数据学习笔记——Hadoop编程实战之HDFS
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程 ...
- 大数据学习笔记之Hadoop(三):MapReduce&YARN
文章目录 一 MapReduce概念 1.1 为什么要MapReduce 1.2 MapReduce核心思想 1.3 MapReduce进程 1.4 MapReduce编程规范(八股文) 1.5 Ma ...
- 大数据学习路线,来qun里分享干货,
一.Linux lucene: 全文检索引擎的架构 solr: 基于lucene的全文搜索服务器,实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面. 推荐一个大数据学习群 ...
随机推荐
- 18.5.2动态代理和AOP
----此处是JDK动态代理----package d18_5_2; public interface IDog { void info(); void run(); } package d18_5_ ...
- double发生精度丢失的解决办法
发生精度丢失的原因: 个人理解:机器在运行时,使用2进制形式的计数方式,而我们日常生活中的计算是10进制的,对于整数的加减乘除,double还能适用,但是对于有小数的,则容易发生精度丢失,即用2进制表 ...
- 分区表,磁盘概念和parted的使用
分区表,磁盘概念和parted的使用 登录陌生系统首先要做的事: 个人认为,首先得知道Linux版本的什么:cat /etc/issue df:查看磁盘的分区和数据的分配情况,类型(NFS,ext4. ...
- servlet生命周期:
Servlet生命周期分为三个阶段: 1,初始化阶段 servlet实例创建时调用init()方法,在Servlet的整个生命周期内,init()方法只被调用一次. 2,响应客户请求阶段 调用ser ...
- js 获取最后一个字符
方法一: str.charAt(str.length - 1) 方法二: str.subStr(str.length-1,1) 方法三: var str = "123456" ...
- P1979 华容道 spfa题解
题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 ...
- 玩ztree的一段代码
<!DOCTYPE HTML> <html lang="zh" xmlns:th="http://www.thymeleaf.org"> ...
- 开始bootstrap的学习
终于过完双十一,服务器顶住了压力,不知道为啥,突然的轻松,反而感觉有点无所适从,好久没写博客了,竟然发现还有人回我,很是开心,问题都是关于阿里云的,阿里云的吭确实多,其实关键在于,官方文档还是少,出了 ...
- help命令
help——获得Shell内置命令的帮助信息 命令所在路径:Shell内置命令 示例1: # help cd 使用which或者whereis查找不到路径的命令一般是Shell内置命令,cd就是一个S ...
- (转)编码剖析Spring管理Bean的原理
http://blog.csdn.net/yerenyuan_pku/article/details/52832434 在Spring的第一个案例中,我们已经知道了怎么将bean交给Spring容器进 ...