P3906 Geodetic集合

题目描述

图G是一个无向连通图,没有自环,并且两点之间至多只有一条边。我们定义顶点v,u最短路径就是从v到u经过边最少的路径。所有包含在v-u的最短路径上的顶点被称为v-u的Geodetic顶点,这些顶点的集合记作I(v, u)。

我们称集合I(v, u)为一个Geodetic集合。

例如下图中,I(2, 5)={2, 3, 4, 5},I(1, 5)={1, 3, 5},I(2, 4)={2, 4}。

给定一个图G和若干点对v,u,请你分别求出I(v, u)。

输入输出格式

输入格式:

输入文件geo.in,第一行为两个整数n,m,分别表示图G的顶点数和边数(顶点编号1-n,n≤40)。下接m行,每行两个整数a,b表示顶点a和b之间有一条无向边。

第m+2行有一个整数k,表示给定的点对数。下接k行,每行两个整数v,u。。

输出格式:

输出文件geo.out,共k行,每行对应输入文件中每一个点对v,u,按顶点编号升序输出I(v, u)。同一行的每个数之间用空格分隔。

输入输出样例

输入样例#1: 复制

5 6
1 2
1 3
2 3
2 4
3 5
4 5
3
2 5
5 1
2 4
输出样例#1: 复制

2 3 4 5
1 3 5
2 4

解题报告:

题目大意:给你一个无向连通图,询问两点之间最短路径上的点

spfa 跑最短路,记录到达每个节点最短路径上的的前驱即可,不过前驱可能有好几个,vector<int>G[N]存储即可

此题有个坑点,一定要去重!!!

#include<bits/stdc++.h>

#define N 101001
using namespace std; int n,m,head[N],tot;
bool pvis[N];
struct nod {
int to,next;
} e[N];
void add(int u,int v) {
e[++tot].to=v,e[tot].next=head[u],head[u]=tot;
} int q,d[N];
bool vis[N];
queue<int>Q;
vector<int>G[];
void spfa(int x) {
while(!Q.empty()) Q.pop();
Q.push(x);
for(int i=; i<=n; i++) G[i].clear();
memset(vis,,sizeof(vis));
memset(d,0x3f,sizeof(d));
vis[x]=,d[x]=;
while(!Q.empty()) {
int u=Q.front();
Q.pop();
vis[u]=;
for(int i=head[u]; i; i=e[i].next) {
int v=e[i].to;
if(d[v]>d[u]+) {
d[v]=d[u]+;
if(!vis[v]) {
G[v].clear();
G[v].push_back(u);
Q.push(v);
vis[v]=;
}
} else if(d[v]==d[u]+) {
G[v].push_back(u);
}
}
}
}
int an[N],tpt;
void dg(int u,int a) {
int sz=G[u].size();
an[++tpt]=u;
for(int i=; i<sz; i++) {
int v=G[u][i];
if(v==a) continue;
dg(v,a);
}
} int main() {
scanf("%d%d",&n,&m);
for(int a,b,i=; i<=m; i++) {
scanf("%d%d",&a,&b);
add(a,b),add(b,a);
}
scanf("%d",&q);
for(int a,b,i=; i<=q; i++) {
scanf("%d%d",&a,&b);
// memset(pvis,0,sizeof(pvis));
spfa(a);
memset(an,,sizeof(an));
tpt=;
dg(b,a);
an[++tpt]=a;
sort(an+,an++tpt);
for(int j=; j<=tpt; j++){
if(an[j]!=an[j+]) printf("%d ",an[j]);
}
puts("");
}
return ;
}

洛谷——P3906 Geodetic集合的更多相关文章

  1. 【洛谷P1978】 集合

    集合 题目链接 显然,我们是要把数据先排序的, 然后从大到小枚举每个数,看是否能选上, 能选就选,不能拉倒 若能,二分查找a[i]/k,若查找成功,ans++ 将a[i]/k标记为不能选择 最后输出答 ...

  2. 【洛谷P1491】集合位置

    题目大意:求给定的一张无向带权图的次短路. 题解:先跑一遍 spfa 求出从起点到终点的最短路,记录路径.接着枚举删边,并重新跑 spfa,统计最小值即可. 至于为什么 dp 做法不行,暂时还不清楚. ...

  3. BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】

    [题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...

  4. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  5. 洛谷P3906 Hoof Paper, Scissor (记忆化搜索)

    这道题问的是石头剪刀布的的出题问题 首先不难看出这是个dp题 其次这道题的状态也很好确定,之前输赢与之后无关,确定三个状态:当前位置,当前手势,当前剩余次数,所以对于剪刀,要么出石头+1分用一次机会, ...

  6. 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式

    接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...

  7. 洛谷 P5206 - [WC2019]数树(集合反演+NTT)

    洛谷题面传送门 神仙多项式+组合数学题,不过还是被我自己想出来了( 首先对于两棵树 \(E_1,E_2\) 而言,为它们填上 \(1\sim y\) 使其合法的方案数显然是 \(y\) 的 \(E_1 ...

  8. 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)

    洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...

  9. 洛谷 3784(bzoj 4913) [SDOI2017]遗忘的集合——多项式求ln+MTT

    题目:https://www.luogu.org/problemnew/show/P3784 https://www.lydsy.com/JudgeOnline/problem.php?id=4913 ...

随机推荐

  1. Android之实现ViewPager+Fragment左右滑动

    近期看新闻发现新闻的页面是能够左右滑动的.于是自己就好奇起来了,之前做过ViewPager展示图片,在想怎么载入页面呢?研究了一下.发现就是加入了Fragment,废话不多说,揭秘奥秘的时候到了. 使 ...

  2. python 执行shell

    一.import os ex: 1.os.system('ls') ----并不能得到返回值 2.output = os.popen('ls') res = output.read() ----能得到 ...

  3. 【转】Android的WebView控件载入网页显示速度慢的究极解决方案

    秒(甚至更多)时间才会显示出来.研究了很久,搜遍了国外很多网站,也看过PhoneGap的代码,一直无解. 一般人堆WebView的加速,都是建议先用webView.getSettings().setB ...

  4. bzoj3907 网格 & bzoj2822 [AHOI2012]树屋阶梯——卡特兰数+高精度

    题目:bzoj3907:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 bzoj2822:https://www.lydsy.com/Jud ...

  5. Android之NDK开发(转载)

    http://www.cnblogs.com/devinzhang/archive/2012/02/29/2373729.html 一.NDK产生的背景 Android平台从诞生起,就已经支持C.C+ ...

  6. Countries in War(强连通分量及其缩点)

    http://poj.org/problem?id=3114 题意:有n个城市,m条边,由a城市到b城市的通信时间为w,若a城市与b城市连通,b城市与a城市也连通,则a,b城市之间的通信时间为0,求出 ...

  7. thinkphp结合云之讯做短信验证码

    thinkphp结合云之讯做短信验证码先去云之讯注册账号 网址http://www.ucpaas.com/ 注册云之讯平台账号,即可免费获得10元测试费用测试够用啦 解压附件到 ThinkPHP\Li ...

  8. 【XSY3209】RGB Sequence

    题目 传送门 解法 用\(f_{i, j, k}\)表示有\(i\)个红石块, \(j\)个绿宝石块, \(k\)个钻石块 可以转移到\(f_{p+1, j, k}\). \(f_{i, p+1,k ...

  9. hdu1814Peaceful Commission(2-SAT)

    Peaceful Commission Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  10. CSS元素超出部分滚动,并隐藏滚动条

    方法一, 利用 css 3 的新特性  -webkit-scrollbar, 但是这种方式不兼容 火狐 和 IE <!DOCTYPE html> <html> <head ...