集训第六周 矩阵快速幂 K题
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
1.使用一个结构体存下矩阵,再写一个二维矩阵乘法函数
2.然后求[1 1 1 0]的n次方?当然不是。
注意:0 ≤ n ≤ 1,000,000,000
如果这样直接乘以n次肯定会超时
可以使用二进制求快速幂
利用二进制求指数幂
举例:
3 ^ 999 = 3 * 3 * 3 * … * 3
直接乘要做998次乘法。但事实上可以这样做,先求出2^k次幂:
3 ^ 2 = 3 * 3
3 ^ 4 = (3 ^ 2) * (3 ^ 2)
3 ^ 8 = (3 ^ 4) * (3 ^ 4)
3 ^ 16 = (3 ^ 8) * (3 ^ 8)
3 ^ 32 = (3 ^ 16) * (3 ^ 16)
3 ^ 64 = (3 ^ 32) * (3 ^ 32)
3 ^ 128 = (3 ^ 64) * (3 ^ 64)
3 ^ 256 = (3 ^ 128) * (3 ^ 128)
3 ^ 512 = (3 ^ 256) * (3 ^ 256)
再相乘:
3 ^ 999
= 3 ^ (512 + 256 + 128 + 64 + 32 + 4 + 2 + 1)
= (3 ^ 512) * (3 ^ 256) * (3 ^ 128) * (3 ^ 64) * (3 ^ 32) * (3 ^ 4) * (3 ^ 2) * 3
把999转为2进制数:1111100111,其个位就是要乘的数。
1 pow ← 1
2 while (n > 0)
3 do if (n mod 2 = 1)
4 then pow ← pow * x
5 x ← x * x
6 n ← n / 2
7 return pow
#include"iostream"
#include"cstdio"
using namespace std; typedef struct
{
int m[][];
}node; node work(node a,node b)
{
node c;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
return c;
} void caculate(int c)
{
node ans,base;
base.m[][]=base.m[][]=base.m[][]=;
base.m[][]=;
ans.m[][]=ans.m[][]=;
ans.m[][]=ans.m[][]=;
while(c)
{
if(c&) ans=work(ans,base);
base=work(base,base);
c>>=;
}
cout<<ans.m[][]<<endl;
} int main()
{
int n;
while(cin>>n&&n>=)
{
caculate(n);
}
}
集训第六周 矩阵快速幂 K题的更多相关文章
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
- hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)
Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...
- POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10521 Accepted: 7477 Descri ...
- Final Destination II -- 矩阵快速幂模板题
求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2] f[n-1] f[n-2] f[n-3] 1 1 ...
- hdu 2604 矩阵快速幂模板题
/* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f( ...
- HDU 1575 矩阵快速幂裸题
题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...
- POJ3070 斐波那契数列递推 矩阵快速幂模板题
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...
- POJ3070矩阵快速幂简单题
题意: 求斐波那契后四位,n <= 1,000,000,000. 思路: 简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
随机推荐
- Resources.getSystem() 与 getResources()区别
参考: http://stackoverflow.com/questions/8633539/resources-getsystem-vs-getresources 相同: 都是取得 Resource ...
- 用.NetReactor保护您的源码[转][修改]
原文链接 前言 VS开发的源代码安全性,是很多开发者头痛的事情.于是保护好源代码便成了开发者们最关心的事情之一了. 在网上搜一搜,很多有不少的第三方工具可以为源代码加密.加密方式不外乎就是混淆,加壳. ...
- [转]asp.net 跨域单点登录
本文转自:http://tech.e800.com.cn/articles/2009/814/1250212319986_1.html 单点登录(Single Sign On),简称为 SSO,是目前 ...
- h5学习-canvas绘制矩形、圆形、文字、动画
绘制矩形<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- mysql自动获取时间日期
实现方式: 1.将字段类型设为 TIMESTAMP 2.将默认值设为 CURRENT_TIMESTAMP 举例应用: 1.MySQL 脚本实现用例 --添加CreateTime 设置默认时间 C ...
- 使用 Java 发送邮件
在我们的应用程序中有时需要给用户发送邮件,例如激活邮件.通知邮件等等.那么如何使用 Java 来给用户发送邮件呢? 使用 java 代码发送邮件 使用工具类发送邮件 使用Spring进行整合发送邮件 ...
- 学JAVA第二十二天,StringBuffer的好处
五一的假期今天就结束了,又要回来上课了. 今天就写一下StringBuffer的好处吧. StringBuffer类的对象能够被多次的修改,并且不产生新的未使用对象. 也就是说,我们平时用String ...
- 三种将list转换为map的方法(传统方法、jdk8 Stream流、guava)
三种将list转换为map的方法 - jackyrong - ITeye博客:http://jackyrong.iteye.com/blog/2158009
- ReactJS-0-React介绍
React介绍: React是一个库而不是一个MVC框架,因为React只负责解决MVC框架中V(View)层面的问题,React致力于创建可重用的UI组件.(React is a library f ...
- 学习笔记 第十一章 CSS3布局基础
第11章 CSS3布局基础 [学习重点] 了解CSS2盒模型. 设计边框样式. 设计边界样式. 设计补白样式. 了解CSS3盒模型. 11.1 CSS盒模型基础 页面中所有元素基本显示形态为方形 ...