骑士共存问题
«问题描述:
在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘

上某些方格设置了障碍,骑士不得进入。

«编程任务:
对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑
士,使得它们彼此互不攻击。
«数据输入:
由文件knight.in给出输入数据。第一行有2 个正整数n 和m (1<=n<=200, 0<=m<=n*n)<n2),< span="">
分别表示棋盘的大小和障碍数。接下来的m 行给出障碍的位置。每行2 个正整数,表示障
碍的方格坐标。
«结果输出:
将计算出的共存骑士数输出到文件knight.out。
输入文件示例 输出文件示例
knight.in
3 2
1 1

3 3

knight.out

5

/*
观察题目,我们可以知道,能够互相跳到的两个点颜色(棋盘颜色)一定是不同的,所以进行染色建一个二分图, 接下来再跑最大独立集。
最大独立集=V-最大匹配。
PS:我的dinic又被虐了,以后真的要改dinic的写法了。
*/
#include<cstdio>
#include<iostream>
#define N 40010
#define M 10000010
#define inf 1000000000
using namespace std;
int a[][],head[N],dis[N],q[N],n,m,cnt=,S,T;
int dx[]={,,-,-,,,-,-};
int dy[]={,-,,-,,-,,-};
struct node{
int v,pre,f;
};node e[M];
int ws(int x,int y){
return (x-)*n+y;
}
void add(int u,int v,int f){
e[++cnt].v=v;e[cnt].f=f;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].v=u;e[cnt].f=;e[cnt].pre=head[v];head[v]=cnt;
}
bool bfs(){
for(int i=;i<=T;i++)dis[i]=inf;
int h=,t=;q[]=S;dis[S]=;
while(h<t){
int now=q[++h];
for(int i=head[now];i;i=e[i].pre){
int v=e[i].v;
if(e[i].f&&dis[v]>dis[now]+){
dis[v]=dis[now]+;
if(v==T)return true;
q[++t]=v;
}
}
}
return dis[T]!=inf;
}
int dinic(int now,int f){
if(now==T)return f;
int w,used=;
for(int i=head[now];i;i=e[i].pre){
int v=e[i].v;
if(e[i].f&&dis[v]==dis[now]+){
w=f-used;
w=dinic(e[i].v,min(e[i].f,w));
e[i].f-=w;
e[i^].f+=w;
used+=w;
if(used==f)return f;
}
}
if(!used) dis[now]=-;
return used;
}
int main(){
freopen("knight.in","r",stdin);
freopen("knight.out","w",stdout);
scanf("%d%d",&n,&m);
S=;T=n*n+;
for(int i=;i<=m;i++){
int x,y;scanf("%d%d",&x,&y);
a[x][y]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(a[i][j])continue;
if(i+j&) add(ws(i,j),T,);
else add(S,ws(i,j),);
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(i+j&) continue;
for(int k=;k<;k++){
int x=i+dx[k],y=j+dy[k];
if(x>=&&x<=n&&y>=&&y<=n&&!a[x][y])
add(ws(i,j),ws(x,y),);
}
}
int ans=n*n-m;
while(bfs()) ans-=dinic(S,inf);
printf("%d",ans);
return ;
}

[网络流24题] 骑士共存(cogs 746)的更多相关文章

  1. AC日记——[网络流24题]骑士共存 cogs 746

    746. [网络流24题] 骑士共存 ★★☆   输入文件:knight.in   输出文件:knight.out   简单对比时间限制:1 s   内存限制:128 MB 骑士共存问题 «问题描述: ...

  2. Cogs 746. [网络流24题] 骑士共存(最大独立集)

    [网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比 时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国 ...

  3. COGS746. [网络流24题] 骑士共存

    骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...

  4. 网络流24题 骑士共存(DCOJ8023)

    题目描述 在一个 n*n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以 ...

  5. 网络流24题——骑士共存问题 luogu 3355

    题目描述:这里 从这里开始,我们涉及到了一个新的问题:最小割问题 首先给出一些定义(本人根据定义自己口胡的): 一个流网络中的一个割是一个边集,使得割掉这些边集后源点与汇点不连通 而最小割问题就是一个 ...

  6. 【费用流】【网络流24题】【cogs 739】运输问题

    739. [网络流24题] 运输问题 ★★ 输入文件:tran.in 输出文件:tran.out 简单对照 时间限制:1 s 内存限制:128 MB «问题描写叙述: «编程任务: 对于给定的m 个仓 ...

  7. [网络流24题]餐巾(cogs 461)

    [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分 ...

  8. loj #6226. 「网络流 24 题」骑士共存问题

    #6226. 「网络流 24 题」骑士共存问题   题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...

  9. Cogs 14. [网络流24题] 搭配飞行员

    这道题其实蛮好想的,因为分为正,副飞行员.所以就把正飞行员当作Boy,副飞行员当作Girl.然后做Hungry即可. #include<bits/stdc++.h> using names ...

随机推荐

  1. java问题收集

    2014-10-27 构造器最好保留一个无参的,否则一些框架调用初始化时,会报错     星期三,2013年11月6日 volatile关键字 : 1. 与synchronized几乎相同,但是vol ...

  2. 配置maven环境变量cmd控制台提示:mvn不是内部或外部命令,也不是可运行的程序或批处理文件

    配置maven环境变量cmd控制台提示:mvn不是内部或外部命令,也不是可运行的程序或批处理文件 首先maven环境变量: 变量名:MAVEN_HOME 变量值:E:\apache-maven-3.2 ...

  3. 外文翻译 《How we decide》赛场上的四分卫

    本书导言翻译 为了能看懂这一章,先做了如下的功课: 百度百科 四分卫 国家橄榄球联盟中文站 在2002年超级碗赛场上,比赛的时间仅剩80秒,两队比分持平.新英格兰爱国者队于17码的位置执球,他们的对手 ...

  4. 关于jquery获取单选框value属性值为on的问题

    当取单选框的value值的时候,前提是要有value这个属性,如果没有value属性那么取出来的就会为on 取value值的常见三种方式为 $("input[name='XXX']:chec ...

  5. Maximum Subsequence Sum 最大子序列和的进击之路

    本文解决最大子序列和问题,有两个题目组成,第二个题目比第一个要求多一些(其实就是要求输出子序列首尾元素). 01-复杂度1 最大子列和问题   (20分) 给定KK个整数组成的序列{ N1​​, N2 ...

  6. [BZOJ2002][Hnoi2010]Bounce弹飞绵羊 LCT

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 建图,每次往后面跳就往目标位置连边,将跳出界的点设为同一个点.对于修改操作发现可以用 ...

  7. Redux中的异步操作

    异步操作的另一种方案就是让Action Creator返回一个Promise对象. 我们这边使用  redux-promise  中间件 import { createStore, applyMidd ...

  8. R in action读书笔记(12)第九章 方差分析

    第九章方差分析 9.2 ANOVA 模型拟合 9.2.1 aov()函数 aov(formula, data = NULL, projections =FALSE, qr = TRUE, contra ...

  9. (转)淘淘商城系列——使用maven tomcat插件启动web工程

    http://blog.csdn.net/yerenyuan_pku/article/details/72672138 上文我们一起学习了怎样搭建maven工程,这篇文章我就来教大家一起学习怎样用to ...

  10. Swift protocol extension method is called instead of method implemented in subclass

    Swift protocol extension method is called instead of method implemented in subclass protocol MyProto ...