设f[i][j][s]为轮廓线推到格子(i,j),状态为s的方案数

括号表示一段线的左端和右端,表示成左括号和右括号,状压的时候用1和2表示,0表示已经闭合

下面的蓝线是黄色格子的轮廓线,dp转移要把它转到橙色轮廓线,设已经在状压的s中取到两条边的状态记为b1,b2



然后分很多情况讨论:

(i,j)是障碍:那就只能什么都不放的转移,也就是只能从b1=0,b2=0转移到新轮廓线的b1=0,b2=0

if(!a[i][j])
{
if(!b1&&!b2)
add(x,v);
}

b1=0,b2=0:因为不能空,所以只能转移一个拐角

else if(!b1&&!b2)
{
if(a[i+1][j]&&a[i][j+1])
add(x+b[j-1]+2*b[j],v);
}

b1=0或者b2=0:根据有无障碍判断能不能转移,如果(i,j+1),(i+1,j)都没有障碍的话就有两种转移,以b1=0,b2!=0为例:

一种是接上然后拐弯,这样转移后的轮廓线括号状态不变



另一种是接上直着走,转移后的轮廓线括号状态b1b2互换



b1!=0,b2=0同理

else if(!b1&&b2)
{
if(a[i][j+1])
add(x,v);
if(a[i+1][j])
add(x-b[j]*b2+b[j-1]*b2,v);
}
else if(b1&&!b2)
{
if(a[i][j+1])
add(x-b[j-1]*b1+b[j]*b1,v);
if(a[i+1][j])
add(x,v);
}

b1=b2=1或2:这样这两条线会在(i,j)格子连起来,两队括号合成一对,以b1=b2=1为例:

else if(b1==1&&b2==1)
{
for(int t=1,l=j+1;l<=m;l++)
{
if((x>>(l*2))%4==1)
t++;
if((x>>(l*2))%4==2)
t--;
if(!t)
{
add(x-b[j]-b[j-1]-b[l],v);
break;
}
}
}
else if(b1==2&&b2==2)
{
for(int t=1,l=j-2;l>=0;l--)
{
if((x>>(l*2))%4==1)
t--;
if((x>>(l*2))%4==2)
t++;
if(!t)
{
add(x+b[l]-2*b[j]-2*b[j-1],v);
break;
}
}
}

b1=2,b2=1:和上面差不多,就是把这两个括号合并就行了

else if(b1==2&&b2==1)
add(x-2*b[j-1]-b[j],v);

b1=1,b2=2:这个只有到最后一个没障碍的点才能转移,因为这是把一条线连成一个回路的最后一步

其实不用转移,直接加进答案就行了

else if(i==tx&&j==ty)
ans+=v;
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=15,mod=299989;
int n,m,la,nw,a[N][N],b[N],c[2],h[300005],tx,ty;
long long ans;
char s[N];
struct qwe
{
int ne,to[2];
long long va[2];
}e[300005];
void add(int x,long long v)
{
int u=x%mod+1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to[nw]==x)
{
e[i].va[nw]+=v;
return;
}
e[++c[nw]].ne=h[u];
e[c[nw]].to[nw]=x;
e[c[nw]].va[nw]=v;
h[u]=c[nw];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=m;j++)
if(s[j]=='.')
a[i][j]=1,tx=i,ty=j;
}
b[0]=1;
for(int i=1;i<=12;i++)
b[i]=b[i-1]<<2;
c[0]=1,e[1].va[0]=1,e[1].to[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=c[nw];j++)
e[j].to[nw]<<=2;
for(int j=1;j<=m;j++)
{
la=nw,nw^=1;
memset(h,0,sizeof(h));
c[nw]=0;
for(int k=1;k<=c[la];k++)
{
int x=e[k].to[la],b1=(x>>(j*2-2))%4,b2=(x>>(j*2))%4;
long long v=e[k].va[la];
if(!a[i][j])
{
if(!b1&&!b2)
add(x,v);
}
else if(!b1&&!b2)
{
if(a[i+1][j]&&a[i][j+1])
add(x+b[j-1]+2*b[j],v);
}
else if(!b1&&b2)
{
if(a[i][j+1])
add(x,v);
if(a[i+1][j])
add(x-b[j]*b2+b[j-1]*b2,v);
}
else if(b1&&!b2)
{
if(a[i][j+1])
add(x-b[j-1]*b1+b[j]*b1,v);
if(a[i+1][j])
add(x,v);
}
else if(b1==1&&b2==1)
{
for(int t=1,l=j+1;l<=m;l++)
{
if((x>>(l*2))%4==1)
t++;
if((x>>(l*2))%4==2)
t--;
if(!t)
{
add(x-b[j]-b[j-1]-b[l],v);
break;
}
}
}
else if(b1==2&&b2==2)
{
for(int t=1,l=j-2;l>=0;l--)
{
if((x>>(l*2))%4==1)
t--;
if((x>>(l*2))%4==2)
t++;
if(!t)
{
add(x+b[l]-2*b[j]-2*b[j-1],v);
break;
}
}
}
else if(b1==2&&b2==1)
add(x-2*b[j-1]-b[j],v);
else if(i==tx&&j==ty)
ans+=v;
}
}
}
printf("%lld\n",ans);
return 0;
}

bzoj 1814: Ural 1519 Formula 1【插头dp】的更多相关文章

  1. bzoj 1814 Ural 1519 Formula 1 插头DP

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 942  Solved: 356[Submit][Sta ...

  2. bzoj 1814 Ural 1519 Formula 1 ——插头DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...

  3. bzoj 1814: Ural 1519 Formula 1 插头dp经典题

    用的括号序列,听说比较快. 然并不会预处理,只会每回暴力找匹配的括号. #include<iostream> #include<cstdio> #include<cstr ...

  4. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  5. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  6. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

  7. BZOJ1814: Ural 1519 Formula 1(插头Dp)

    Description Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic gam ...

  8. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  9. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

随机推荐

  1. mysql 同样内容的字段合并为一条的方法

    从两个表中内联取出的数据,当中category_name字段有同样内容,想将具有同样内容的字段进行合并,将amount字段进行加法运算,变成下表中的内容 url=http%3A%2F%2Fdev.my ...

  2. Windows 8实用窍门系列:20.Windows 8中的GridView使用(二)和DataTemplateSelector

    在本文中所讲述内容的实例仍然沿用于上篇文章,有什么疑惑可以参考上篇文章. 一 GroupStyle 在GridView控件中我们可以对数据进行分组显示,通过对GridView的GroupStyle进行 ...

  3. Unity自己主动打包工具

    最開始有写打包工具的想法,是由于看到<啪啪三国>王伟峰分享的一张图,他们有一个专门的"工具程序猿"开发各种工具. (ps:说起来这个王伟峰和他的创始团队成员,曾经跟我是 ...

  4. 白帽子讲web安全读后感

    又是厚厚的一本书,为了不弄虚做假,只得变更计划,这一次调整为读前三章,安全世界观,浏览器安全和xss.其它待用到时再专门深入学习. 吴翰清是本书作者,icon是一个刺字,圈内人称道哥.曾供职于阿里,后 ...

  5. debian var目录

    1 /usr和/var /usr,只读数据. /var,可变数据. 2 /var/lib和/var/cache /var/lib,保存应用或者系统可变的状态信息,真的只是状态信息,比如/var/lib ...

  6. XMU C语言程序设计实践(5)

    •       使用动态链表完成一个简单的商品库存信息管理系统. •       商品信息包括如下字段:商品号.商品名称.商品库存 •       函数 create:接收用户输入的商品号和商品名称的 ...

  7. mini_magick

    https://github.com/minimagick/minimagick class  https://www.rubydoc.info/github/minimagick/minimagic ...

  8. 程序中引入库文件的头文件 编译时并不需要显示的用gcc去链接他的库文件 why?

    拿一个苹果系统下的c文件为例: testArr.c #include <stdio.h> int main() { , , , , }; printf(]); } 当我们编译的时候  一般 ...

  9. ES6 对象的解构赋值

    对象的解构赋值 解构不仅可以用于数组,还可以用于对象. let {foo,bar} = {foo:"aaa",bar:"bbb"}; console.log(f ...

  10. javascript 无刷新上传图片之原理

    刚开始我认为可以像ajax 那样获取到数据然后通过ajax 发送请求,后来发现浏览器为了客户端的安全默认并没有给javascript 这个权限.这个方法当然是行不同了.我看了好像开源的上传图片原理,当 ...