BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数
BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数
Description
Input
Output
Sample Input
Sample Output
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
typedef double f2;
map<ll,int>mp;
ll ch(ll x,ll y,ll mod) {ll re=0;for(;y;y>>=1ll,x=(x+x)%mod) if(y&1ll) re=(re+x)%mod; return re;}
ll random(ll x,ll y) {return ((rand()*(1ll<<45))+(rand()*(1ll<<30))+(rand()<<15)+(rand()))%(y-x+1)+x;}
ll qp(ll x,ll y,ll mod) {ll re=1;for(;y;y>>=1ll,x=ch(x,x,mod)) if(y&1ll) re=ch(re,x,mod); return re;}
ll a[]={2,3,5,7,11,13,17,19,23,29};
ll ans;
ll Abs(ll x) {return x>0?x:-x;}
ll gcd(ll x,ll y) {return y?gcd(y,x%y):x;}
ll b[250000];
bool check(ll a,ll n,ll r,ll s) {
ll x=qp(a,r,n),y=x,i;
for(i=1;i<=s;i++,y=x) {x=ch(x,x,n); if(x==1&&y!=1&&y!=n-1) return 0;}
return x==1;
}
bool MR(ll n) {
if(n<=1) return 0; ll r=n-1,s=0,i;
for(;!(r&1);r>>=1ll,s++);
for(i=0;i<=9;i++) {
if(a[i]==n) return 1;
if(!check(a[i],n,r,s)) return 0;
}
return 1;
}
ll f(ll x,ll c,ll mod) {return (ch(x,x,mod)+c)%mod;}
ll PR(ll n,ll c) {
ll x=random(0,n-1),y=f(x,c,n),p;
for(p=1;p==1&&x!=y;) {
x=f(x,c,n); y=f(f(y,c,n),c,n); p=gcd(Abs(x-y),n);
}
return p==1?n:p;
/*ll k=2,x=rand()%n,y=x,p=1,i;
for(i=1;p==1;i++) {
printf("%lld %lld\n",x,y);
x=f(x,c,n); p=gcd(n,Abs(x-y)); if(i==k) y=x,k+=k;
}
return p;*/
}
void solve(ll n) {
if(n==1) return ;
if(MR(n)) {
b[++b[0]]=n;
return ;
}
ll t=n;
while(t==n) t=PR(n,rand()%n);
solve(t); solve(n/t);
}
int main() {
ll n;
srand(19260817);
scanf("%lld",&n); ans=n;
int i;
for(i=0;i<=9;i++) {
if(n%a[i]==0) {
ans=ans/a[i]*(a[i]-1); while(n%a[i]==0) n/=a[i];
}
}
solve(n);
int tot=unique(b+1,b+b[0]+1)-b-1;
for(i=1;i<=tot;i++) ans=ans/b[i]*(b[i]-1);
printf("%lld\n",ans);
}
BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数的更多相关文章
- BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行 ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- 第三十五个知识点:给针对ECDLP问题的Pollard rho,Pollard "Kangaroo",parallel Pollard rho攻击的一个粗略的描述
第三十五个知识点:给针对ECDLP问题的Pollard rho,Pollard "Kangaroo",parallel Pollard rho攻击的一个粗略的描述 我们的目标是对任 ...
- POJ 1811 Prime Test (Pollard rho 大整数分解)
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...
- 整数(质因子)分解(Pollard rho大整数分解)
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...
随机推荐
- 网络协议TCP
TCP:传输控制协议 tcp的特点:面向连接(打电话模型),可靠传输 tcp通信的三个步骤: 1.通信双方建立连接 2.收发收据 3.关闭连接 tcp客户端实现流程 """ ...
- assert.ok()详解
assert.ok(value[, message]) 测试 value 是否为真值.它等同于 assert.equal(!!value, true, message). 如果 value 不是真值, ...
- 在rubymine中集成heroku插件
先安装heroku,参见http://www.cnblogs.com/jecyhw/p/4906990.html Heroku安装之后,就自动安装上git,目录为C:\Program Files (x ...
- python 连接sqlserver: pymssql
停了一个月,终于还是把这个做了,工作需要!!!在装pymssql时,一直报错,确定了要先装freetds: 1. 安装freetds时报错,搜索到要先进行如下操作: brew unlink freet ...
- Python之机器学习-sklearn生成随机数据
sklearn-生成随机数据 import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotli ...
- Html、Css、JavaScript 遇到的问题总结
$('body').scrollTop()无效得解决方案 鼠标滑轮获取到得值为0:var scrollTop = $('body').scrollTop(); 在页面中加一个随着页面滚动条滚动的小图片 ...
- 绑定IP 绑定设备
首先引别人的组播测试如下 1. 一个udp client可以同时往多个组播地址发送数据,多个udpclient可以同时往一个组播发数据. 2. 本地udp必须监听组播端口,否则收不到数据.3. 一个u ...
- word 给段落添加背景色
word 2007 单击"页面布局"选项卡->单击"页面背景"一栏中的"页面边框"->(弹出边框与底纹对话框)->点击底纹 ...
- JQuery_九大选择器
JQuery_九大选择器-----https://blog.csdn.net/pseudonym_/article/details/76093261
- Springboot和SpringMVC区别
Springboot和SpringMVC区别----http://www.cnblogs.com/xdyixia/p/9279644.html