洛谷 P4013 数字梯形问题【最大费用最大流】
第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大流
第二问:没有点经过次数的限制所以不用拆点,s向第一行建(s,i,1,0),然后最后一行连向汇点(i,t,inf,val[i])(这里注意!!连向t的边表示的是选最后一排的点,然后点选的次数不受限所以这里流量为inf!在这里WA了一次),1到n-1行然后每个点向它能到达的两个点连(i,j,1,val[i]),这里表示的是路径,而路径有次数限制,所以流量为1。跑最大费用最大流
第三问:同上,只是没了边的限制所以1到n-1行然后每个点向它能到达的两个点连(i,j,inf,val[i])。跑最大费用最大流
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=1000005,inf=1e9;
int n,m,h[N],cnt=1,dis[N],fr[N],id[55][55],tot,a[25][25],ans,ans1,ans2,ans3,s,t;
bool v[N];
struct qwe
{
int ne,no,to,va,c;
}e[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<int>q;
for(int i=s;i<=t;i++)
dis[i]=-inf;
dis[s]=0;
v[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]<dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=-inf;
}
void mcf()
{//cout<<"OK"<<endl;
int x=inf;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=x*e[i].c;
}
}
int fyl()
{
ans=0;
while(spfa())
mcf();
return ans;
}
int main()
{
m=read(),n=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m+i-1;j++)
{
a[i][j]=read();
id[i][j]=++tot;
}//cout<<"ok"<<endl;
s=0,t=tot*2+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m+i-1;j++)
ins(id[i][j],id[i][j]+tot,1,a[i][j]);
for(int i=1;i<=m;i++)
ins(s,id[1][i],1,0);
for(int i=1;i<=m+n-1;i++)
ins(id[n][i]+tot,t,1,0);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++)
{
ins(id[i][j]+tot,id[i+1][j],1,0);
ins(id[i][j]+tot,id[i+1][j+1],1,0);
}
ans1=fyl();
memset(h,0,sizeof(h));
cnt=1;s=0,t=tot+1;
for(int i=1;i<=m;i++)
ins(s,id[1][i],1,0);
for(int i=1;i<=m+n-1;i++)
ins(id[n][i],t,inf,a[n][i]);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++)
{
ins(id[i][j],id[i+1][j],1,a[i][j]);
ins(id[i][j],id[i+1][j+1],1,a[i][j]);
}
ans2=fyl();
memset(h,0,sizeof(h));
cnt=1;s=0,t=tot+1;
for(int i=1;i<=m;i++)
ins(s,id[1][i],1,0);
for(int i=1;i<=m+n-1;i++)
ins(id[n][i],t,inf,a[n][i]);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++)
{
ins(id[i][j],id[i+1][j],inf,a[i][j]);
ins(id[i][j],id[i+1][j+1],inf,a[i][j]);
}
ans3=fyl();
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return 0;
}
洛谷 P4013 数字梯形问题【最大费用最大流】的更多相关文章
- 洛谷P4013 数字梯形问题(费用流)
传送门 两个感受:码量感人……大佬nb…… 规则一:$m$条路径都不相交,那么每一个点只能经过一次,那么考虑拆点,把每一个点拆成$A_{i,j}$和$B_{i,j}$,然后两点之间连一条容量$1$,费 ...
- 洛谷P4013数字梯形问题——网络流24题
题目:https://www.luogu.org/problemnew/show/P4013 最大费用最大流裸题: 注意:在第二种情况中,底层所有点连向汇点的边容量应该为inf,因为可以有多条路径结束 ...
- 洛谷P4013 数字梯形问题(费用流)
题意 $N$行的矩阵,第一行有$M$个元素,第$i$行有$M + i - 1$个元素 问在三个规则下怎么取使得权值最大 Sol 我只会第一问qwq.. 因为有数量的限制,考虑拆点建图,把每个点拆为$a ...
- 洛谷 P4013 数字梯形问题
->题目链接 题解: 网络流. #include<cstdio> #include<iostream> #include<queue> #include< ...
- COGS738 [网络流24题] 数字梯形(最小费用最大流)
题目这么说: 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径.规则1:从梯形的 ...
- 洛谷P3381 - 【模板】最小费用最大流
原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...
- 洛谷 P2053 [SCOI2007]修车(最小费用最大流)
题解 最小费用最大流 n和m是反着的 首先, \[ ans = \sum{cost[i][j]}*k \] 其中,\(k\)为它在当前技术人员那里,排倒数第\(k\)个修 我们可以对于每个技术人员进行 ...
- 洛谷 P3381【模板】最小费用最大流
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...
- 洛谷 P3381 【模板】最小费用最大流
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数\(N.M.S.T\) ...
随机推荐
- 从零开始写STL—functional
function C++11 将任意类型的可调用(Callable)对象与函数调用的特征封装到一起. 这里的类是对函数策略的封装,将函数的性质抽象成组件,便于和algorithm库配合使用 基本运算符 ...
- loj515 贪心只能过样例(bitset)
题目: https://loj.ac/problem/515 分析: 所有可能和的最大值是1e6 如果dp的话,dp[i][j]表示前i个数能否凑出和为j的数 这样是O(n^5)的 考虑到[j]可以用 ...
- JDBC调用存储过程,进参出参
今天做了一个数据表拷贝的功能,用到了存储过程,就写了一个java中用jdbc调用存储过程的代码,成功的实现了功能,晚上跑回家记录下 Connection conn = ConnectionUtil.g ...
- 转: 关于Linux常用的二进制文件分析方法
当你在unix下拿到一个二进制文件但不知道它是什么的时候,可以通过以下方法得到一此提示 1. 最首先应该尝试strings命令,比如拿到一个叫cr1的二进制文件,可以: $ strings cr1 | ...
- C# Queue与RabbitMQ的爱恨情仇(文末附源码):Q与MQ消息队列简单应用(二)
上一章我们讲了队列( Queue),这一章我们讲Message Queue消息队列,简称MQ. 定义: MQ是MessageQueue,消息队列的简称(是流行的开源消息队列系统,利用erlang语言开 ...
- 【Nginx】发送响应
请求处理完毕后,需要向用户发送http响应,告知客户端Nginx的执行结果.http响应主要包括响应行.响应头部.包体三部分.发送http响应时需要执行发送http头部(发送http头部时也会发送响应 ...
- LeetCode 67 Add Binary(二进制相加)(*)
翻译 给定两个二进制字符串,返回它们的和(也是二进制字符串). 比如, a = "11" b = "1" 返回 "100". 原文 Give ...
- WebApi-路由机制 Visual Studio 2015中的常用调试技巧分享
WebApi-路由机制 一.WebApi路由机制是什么? 路由机制通俗点来说:其实就是WebApi框架将用户在浏览器中输入的Url地址和路由表中的路由进行匹配,并根据最终匹配的路由去寻找并匹配相应 ...
- NSUserDefaults 保存自己定义对象
项目里json返回的一个model须要保存下来,这个model是固定的没必须去创建表,想到了NSUserDefaults来存储,暂不考虑安全问题. NSUserDefaults没法直接存储一个对象.在 ...
- Android之——AIDL深入
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/47071927 在上一篇博文<Android之--AIDL小结>中,我们 ...