密集轨迹的方法是通过在视频帧上密集地采样像素点并且在追踪,从而构造视频的局部描述子,最后对视频进行分类的方法依然是传统的SVM等方法。

生成密集轨迹:

(1)从8个不同的空间尺度中采样,它们的尺度差因子为,而采样的点只需要简单地每间隔W = 5个像素取一个点即可。

(2)对于下一个点位置的估计,通过估计密集光流场获得,有以下计算公式:

,其中M是均值过滤器,就是计算的光流场,是Pt周围的点。这样可以对采样点逐帧追踪。

(3)为了防止轨迹点的漂移,密集轨迹最多追踪L帧。当在一个W*W的邻域内没有发现追踪点,那么采样一个点。

(4)在均匀的图像区域,是不需要去追踪点的。对于每一个特征点,计算它自相关矩阵的最小特征值(特征值意味着变化的情况,这里其实搞的不是很明白),因为此处只对动态的信息感兴趣。

(5)构造轨迹编码局部的动作模式,通过偏移量序列描述这条轨迹。这样的描述子应该也作为视屏描述子的一部分的。如果把它归一化,可以得到

沿轨迹的描述子:(如下图)

1、  HOGHOF描述特征

2、MBH特征

SVM分类器:

使用BOF的方法,构造word,最后使用SVM分类器进行视频的分类。

【CV论文阅读】action recognition by dense trajectories的更多相关文章

  1. 【CV论文阅读】Dynamic image networks for action recognition

    论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而 ...

  2. 【CV论文阅读】Rank Pooling for Action Recognition

    这是期刊论文的版本,不是会议论文的版本.看了论文之后,只能说,太TM聪明了.膜拜~~ 视频的表示方法有很多,一般是把它看作帧的序列.论文提出一种新的方法去表示视频,用ranking function的 ...

  3. 【CV论文阅读】Two stream convolutional Networks for action recognition in Vedios

    论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联 ...

  4. 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition

    论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...

  5. 【CV论文阅读】Going deeper with convolutions(GoogLeNet)

    目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于 ...

  6. 【CV论文阅读】Deep Linear Discriminative Analysis, ICLR, 2016

    DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练.从实验结果来看,使用DeepLDA模型最后投影的特征也是很discriminative 的,但是很遗 ...

  7. 【CV论文阅读】Unsupervised deep embedding for clustering analysis

    Unsupervised deep embedding for clustering analysis 偶然发现这篇发在ICML2016的论文,它主要的关注点在于unsupervised deep e ...

  8. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

  9. 【CV论文阅读】Image Captioning 总结

    初次接触Captioning的问题,第一印象就是Andrej Karpathy好聪明.主要从他的两篇文章开始入门,<Deep Fragment Embeddings for Bidirectio ...

随机推荐

  1. Ant安装以及环境配置以及使用[windows环境]

    一.安装ant 官方主页http://ant.apache.org下载新版的ant. *下载对应的版本,解压到我们的硬盘. 二.配置环境变量 Window中设置ant环境变量: ANT_HOME    ...

  2. 297 Serialize and Deserialize Binary Tree 二叉树的序列化与反序列化

    序列化是将一个数据结构或者对象转换为连续的比特位的操作,进而可以将转换后的数据存储在一个文件或者内存中,同时也可以通过网络传输到另一个计算机环境,采取相反方式重构得到原数据.请设计一个算法来实现二叉树 ...

  3. EasyUI系列学习(十)-Tabs(选项卡)

    一.创建组件 <div class="easyui-tabs" style="width:500px;height:250px"> <div ...

  4. Modbus消息帧

    两种传输模式中(ASCII和RTU),传输设备以将Modbus消息转为有起点和终点的帧,这就允许接收的设备在消息起始处开始工作,读地址分配信息,判断哪一个设备被选中(广播方式则传给所以设备),判知何时 ...

  5. Python学习笔记之默认参数

    函数定义时 参数定义的顺序必须是:必选参数.默认参数.可变参数和关键字参数. def test(a,b,c=1,*d,**e) pass

  6. Markdown(github)语法

    << 访问 Wow!Ubuntu NOTE: This is Simplelified Chinese Edition Document of Markdown Syntax. If yo ...

  7. Linux文件排序和FASTA文件操作

    文件排序 seq: 产生一系列的数字; man seq查看其具体使用.我们这使用seq产生下游分析所用到的输入文件. # 产生从1到10的数,步长为1 $ seq 1 10 1 2 3 4 5 6 7 ...

  8. java项目其他基础配置

    创建完maven项目之后. 1.pom.xml文件配置项目相关的架包. 2.src.main.resources下边 创建文件夹:spring以及mapper. 3.src.main.resource ...

  9. vue中的input使用e.target.value赋值的问题

    很久不写博客了... vue中对表单的处理,相对原生js,增加了一个双向绑定的语法糖:v-model.官方文档里有一段: v-model 会忽略所有表单元素的 value.checked.select ...

  10. CAD绘制一个图象标记对象(com接口VB语言)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...