bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)
【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=2818
【题意】
问(x,y)为质数的有序点对的数目。
【思路一】
定义f[i]表示i之前(x,y)=1的有序点对的数目,则有递推式:
f[1]=1
f[i]=f[i-1]+phi[i]*2
我们依次枚举小于n的所有素数,对于素数t,(x,y)=t的数目等于(x/t,y/t),即f[n/t]。
【代码一】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+; int su[N],tot,phi[N];
ll f[N]; void get_pre(int n)
{
phi[]=;
for(int i=;i<=n;i++) if(!phi[i]) {
su[++tot]=i;
for(int j=i;j<=n;j+=i) {
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
f[]=;
for(int i=;i<=n;i++) f[i]=f[i-]+*phi[i];
} int n; int main()
{
scanf("%d",&n);
get_pre(n);
ll ans=;
for(int i=;i<=tot;i++)
ans+=f[n/su[i]];
printf("%lld\n",ans);
return ;
}
【思路二】
其它思路一样,不同的是使用莫比乌斯反演计算(x,y)=1的数目,累计答案的时间复杂度为O(n sqrt(n))
推倒过程:
【代码二】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+; int su[N],mu[N],tot,vis[N]; void get_mu(int n)
{
mu[]=;
for(int i=;i<=n;i++) {
if(!vis[i]) {
su[++tot]=i;
mu[i]=-;
}
for(int j=;j<=tot&&su[j]*i<=n;j++) {
vis[i*su[j]]=;
if(i%su[j]==) mu[i*su[j]]=;
else mu[i*su[j]]=-mu[i];
}
}
for(int i=;i<=n;i++) mu[i]+=mu[i-];
} int n; ll calc(int n)
{
int i,last; ll ans=;
for(int i=;i<=n;i=last+) {
last=n/(n/i);
ans+=(ll)(n/i)*(n/i)*(mu[last]-mu[i-]);
}
return ans;
} int main()
{
// freopen("in.in","r",stdin);
// freopen("out.out","w",stdout);
scanf("%d",&n);
get_mu(n);
ll ans=;
for(int i=;i<=tot;i++)
ans+=calc(n/su[i]);
printf("%lld\n",ans);
return ;
}
UPD.16/4/8
另外莫比乌斯反演还有一种O(n)预处理O(sqrt(n))查询的做法 click Here
bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)的更多相关文章
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...
- hdu6390 /// 欧拉函数+莫比乌斯反演 筛inv[] phi[] mu[]
题目大意: 给定m n p 求下式 题解:https://blog.csdn.net/codeswarrior/article/details/81700226 莫比乌斯讲解:https://ww ...
随机推荐
- [Unity菜鸟] FBX模型动画提取
角色已经人形化(Humanoid)了,那它的动画可以用在其它的模型上了也就是可以共用一套模型动画了,但是你有没有发现那动画是和fbx模型绑在一起的,没关系你可以选中这几个动画文件按Contrl+D就可 ...
- Android Cursor空指针的问题
最近几天无聊自己动手写个音乐播放器,用到Cursor来取得数据库中音乐文件的信息,但是当用到Cursor的时候总是报空指针错误,后来发现是模拟器上没有音乐文件,使用Cursor的时候 ,若Cursor ...
- Java API —— File类
1.File类的概述 文件和目录路径名的抽象表示形式,创建File对象后,仅仅是一个路径的表示,不代码具体的事物一定是存在的. 2.构造方法 · public File ...
- linux 开机自启动软件(包含xampp方法)
linux设置apache和mysql: linux开启启动的程序一般放在/etc/rc.d/init.d/里面,/etc/init.d/是其软连接. mysql设为linux服务 cp /usr/l ...
- ubuntu10.04开启root登陆
半年没有用ubuntu了,以前用的是8.10,现在装了一个10.04,第一印象就是登陆窗口变了,哎,比较喜欢用root用户登录系统,不喜欢非root用户,做任何事都要来一下sudo,10.04的登陆窗 ...
- apns-http2-php,苹果push升级到http2
最近公司push推送升级,用苹果http2进行推送,http2的好处就不说了,这些网上都可以查到,但是真正在项目中用的,用php写的还是特别少,因此,写出来跟大家分享,废话不说了,直接上代码: pus ...
- R语言字符串函数
字符串长度: nchar("hello world") #字符串连接:paste) <- value substr("abcdef", 2, 4)[1] ...
- R: count number of distinct values in a vector
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435, 453,435,324,34,456,56,567,65,34,435) a & ...
- [HDOJ2818]Building Block(带权并查集,路径压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2818 题意:有N个块,每次有两个操作: M x y表示把x所在的那一堆全部移到y所在的那一堆的下方. ...
- [POJ3177]Redundant Paths(双连通图,割边,桥,重边)
题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1. 构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...