本文将总结一种数据结构:跳跃表。前半部分跳跃表性质和操作的介绍直接摘自《让算法的效率跳起来--浅谈“跳跃表”的相关操作及其应用》上海市华东师范大学第二附属中学 魏冉。之后将附上跳跃表的源代码,以及本人对其的了解。难免有错误之处,希望指正,共同进步。谢谢。

跳跃表(Skip List)是1987年才诞生的一种崭新的数据结构,它在进行查找、插入、删除等操作时的期望时间复杂度均为O(logn),有着近乎替代平衡树的本领。而且最重要的一点,就是它的编程复杂度较同类的AVL树,红黑树等要低得多,这使得其无论是在理解还是在推广性上,都有着十分明显的优势。

首先,我们来看一下跳跃表的结构

跳跃表由多条链构成(S0,S1,S2 ……,Sh),且满足如下三个条件:

每条链必须包含两个特殊元素:+∞ 和 -∞(其实不需要)
S0包含所有的元素,并且所有链中的元素按照升序排列。
每条链中的元素集合必须包含于序数较小的链的元素集合。
   操作

一、查找
   目的:在跳跃表中查找一个元素x
   在跳跃表中查找一个元素x,按照如下几个步骤进行:
      1. 从最上层的链(Sh)的开头开始
      2. 假设当前位置为p,它向右指向的节点为q(p与q不一定相邻),且q的值为y。将y与x作比较
          (1) x=y  输出查询成功及相关信息
          (2) x>y  从p向右移动到q的位置
          (3) x<y  从p向下移动一格

3. 如果当前位置在最底层的链中(S0),且还要往下移动的话,则输出查询失败

二、插入
     目的:向跳跃表中插入一个元素x
     首先明确,向跳跃表中插入一个元素,相当于在表中插入一列从S0中某一位置出发向上的连续一段元素。有两个参数需要确定,即插入列的位置以及它的“高度”。
     关于插入的位置,我们先利用跳跃表的查找功能,找到比x小的最大的数y。根据跳跃表中所有链均是递增序列的原则,x必然就插在y的后面。
     而插入列的“高度”较前者来说显得更加重要,也更加难以确定。由于它的不确定性,使得不同的决策可能会导致截然不同的算法效率。为了使插入数据之后,保持该数据结构进行各种操作均为O(logn)复杂度的性质,我们引入随机化算法(Randomized Algorithms)。

我们定义一个随机决策模块,它的大致内容如下:

产生一个0到1的随机数r     r ← random() 
如果r小于一个常数p,则执行方案A,  if  r<p then do A 
否则,执行方案B         else do B 
     初始时列高为1。插入元素时,不停地执行随机决策模块。如果要求执行的是A操作,则将列的高度加1,并且继续反复执行随机决策模块。直到第i次,模块要求执行的是B操作,我们结束决策,并向跳跃表中插入一个高度为i的列。

我们来看一个例子:
     假设当前我们要插入元素“40”,且在执行了随机决策模块后得到高度为4
     步骤一:找到表中比40小的最大的数,确定插入位置

步骤二:插入高度为4的列,并维护跳跃表的结构

三、删除

目的:从跳跃表中删除一个元素x
    删除操作分为以下三个步骤:

在跳跃表中查找到这个元素的位置,如果未找到,则退出 
将该元素所在整列从表中删除 
将多余的“空链”删除


    我们来看一下跳跃表的相关复杂度:
 
       空间复杂度: O(n)       (期望)
       跳跃表高度: O(logn)  (期望)

相关操作的时间复杂度:
      查找:  O(logn)    (期望)
      插入:  O(logn)    (期望)
      删除:  O(logn)   (期望)
  
    之所以在每一项后面都加一个“期望”,是因为跳跃表的复杂度分析是基于概率论的。有可能会产生最坏情况,不过这种概率极其微小。

--------------------------------------------------------------------------------

以下是自己学习时碰到的一些问题

首先分配一个链表,用list.hdr指向,长度为跳跃表规定的最高层,说是链表,在以下代码中只是分配了一段连续的空间,用来指向每一层的开始位置。我们看到结构体nodeType中,有一个key,一个rec(用户数据),还有一个指向结构体的指针数组。

一开始的那些图容易给人误解。如上图所示,例如每个节点的forward[2],就认为是跳跃表的第3层。List.hdr的forward[2]指向11,11的forward[2]指向30,30的forward[2]指向53。这就是跳跃表的第3层:11---30-----53。(准确的说每个forward都指向新节点,新节点的同层forward又指向另一个节点,从而构成一个链表,而数据只有一个,并不是像开始途中所画的那样有N个副本)。本人天资愚钝,看了挺长时间才把它在内存里的结构看清楚了,呵呵。

SkipList在leveldb以及lucence中都广为使用,是比较高效的数据结构。由于它的代码以及原理实现的简单性,更为人们所接受。我们首先看看SkipList的定义,为什么叫跳跃表?

“     Skip lists  are data structures  that use probabilistic  balancing rather  than  strictly  enforced balancing. As a result, the algorithms  for insertion  and deletion in skip lists  are much simpler and significantly  faster  than  equivalent  algorithms  for balanced trees.   ”

译文:跳跃表使用概率均衡技术而不是使用强制性均衡,因此,对于插入和删除结点比传统上的平衡树算法更为简洁高效。

我们看一个图就能明白,什么是跳跃表,如图1所示:

图1:跳跃表简单示例

如上图所示,是一个即为简单的跳跃表。传统意义的单链表是一个线性结构,向有序的链表中插入一个节点需要O(n)的时间,查找操作需要O(n)的时间。如果我们使用图1所示的跳跃表,就可以减少查找所需时间为O(n/2),因为我们可以先通过每个节点的最上面的指针先进行查找,这样子就能跳过一半的节点。比如我们想查找19,首先和6比较,大于6之后,在和9进行比较,然后在和12进行比较......最后比较到21的时候,发现21大于19,说明查找的点在17和21之间,从这个过程中,我们可以看出,查找的时候跳过了3、7、12等点,因此查找的复杂度为O(n/2)。查找的过程如下图2:

   图2:跳跃表查找操作简单示例

其实,上面基本上就是跳跃表的思想,每一个结点不单单只包含指向下一个结点的指针,可能包含很多个指向后续结点的指针,这样就可以跳过一些不必要的结点,从而加快查找、删除等操作。对于一个链表内每一个结点包含多少个指向后续元素的指针,这个过程是通过一个随机函数生成器得到,这样子就构成了一个跳跃表。这就是为什么论文“Skip Lists : A Probabilistic Alternative to Balanced Trees ”中有“概率”的原因了,就是通过随机生成一个结点中指向后续结点的指针数目。随机生成的跳跃表可能如下图3所示:

  图3:随机生成的跳跃表

跳跃表的大体原理,我们就讲述到这里。下面我们将从如下几个方面来探讨跳跃表的操作:

1、重要数据结构定义

2、初始化表

3、查找

4、插入

5、删除

6、随机数生成器

7、释放表

8、性能比较

(一)重要数据结构定义

从图3中,我们可以看出一个跳跃表是由结点组成,结点之间通过指针进行链接。因此我们定义如下数据结构:

//定义key和value的类型
typedef int KeyType;
typedef int ValueType; //定义结点
typedef struct nodeStructure* Node;
struct nodeStructure{
KeyType key;
ValueType value;
Node forward[];
}; //定义跳跃表
typedef struct listStructure* List;
struct listStructure{
int level;
Node header;
};

每一个结点都由3部分组成,key(关键字)、value(存放的值)以及forward数组(指向后续结点的数组,这里只保存了首地址)。通过这些结点,我们就可以创建跳跃表List,它是由两个元素构成,首结点以及level(当前跳跃表内最大的层数或者高度)。这样子,基本的数据结构定义完毕了。

(二)初始化表
     初始化表主要包括两个方面,首先就是header节点和NIL结点的申请,其次就是List资源的申请。

void SkipList::NewList(){
//设置NIL结点
NewNodeWithLevel(, NIL_);
NIL_->key = 0x7fffffff;
//设置链表List
list_ = (List)malloc(sizeof(listStructure));
list_->level = ;
//设置头结点
NewNodeWithLevel(MAX_LEVEL,list_->header);
for(int i = ; i < MAX_LEVEL; ++i){
list_->header->forward[i] = NIL_;
}
//设置链表元素的数目
size_ = ;
} void SkipList::NewNodeWithLevel(const int& level,
Node& node){
//新结点空间大小
int total_size = sizeof(nodeStructure) + level*sizeof(Node);
//申请空间
node = (Node)malloc(total_size);
assert(node != NULL);
}

其中,NewNodeWithLevel是申请结点(总共level层)所需的内存空间。NIL_节点会在后续全部代码实现中可以看到。

(三)查找

查找就是给定一个key,查找这个key是否出现在跳跃表中,如果出现,则返回其值,如果不存在,则返回不存在。我们结合一个图就是讲解查找操作,如下图4所示:

图4:查找操作前的跳跃表

如果我们想查找19是否存在?如何查找呢?我们从头结点开始,首先和9进行判断,此时大于9,然后和21进行判断,小于21,此时这个值肯定在9结点和21结点之间,此时,我们和17进行判断,大于17,然后和21进行判断,小于21,此时肯定在17结点和21结点之间,此时和19进行判断,找到了。具体的示意图如图5所示:

图5:查找操作后的跳跃表

bool SkipList::Search(const KeyType& key,
ValueType& value){
Node x = list_->header;
int i;
for(i = list_->level; i >= ; --i){
while(x->forward[i]->key < key){
x = x->forward[i];
}
}
x = x->forward[];
if(x->key == key){
value = x->value;
return true;
}else{
return false;
}
}

(四)插入

插入包含如下几个操作:1、查找到需要插入的位置   2、申请新的结点    3、调整指针。

我们结合下图6进行讲解,查找如下图的灰色的线所示  申请新的结点如17结点所示, 调整指向新结点17的指针以及17结点指向后续结点的指针。这里有一个小技巧,就是使用update数组保存大于17结点的位置,这样如果插入17结点的话,就指针调整update数组和17结点的指针、17结点和update数组指向的结点的指针。update数组的内容如红线所示,这些位置才是有可能更新指针的位置。

  图6:插入操作示意图(感谢博主:来自cnblogs的qiang.xu )

bool SkipList::Insert(const KeyType& key,
const ValueType& value){
Node update[MAX_LEVEL];
int i;
Node x = list_->header;
//寻找key所要插入的位置
//保存大于key的位置信息
for(i = list_->level; i >= ; --i){
while(x->forward[i]->key < key){
x = x->forward[i];
} update[i] = x;
} x = x->forward[];
//如果key已经存在
if(x->key == key){
x->value = value;
return false;
}else{
//随机生成新结点的层数
int level = RandomLevel();
//为了节省空间,采用比当前最大层数加1的策略
if(level > list_->level){
level = ++list_->level;
update[level] = list_->header;
}
//申请新的结点
Node newNode;
NewNodeWithLevel(level, newNode);
newNode->key = key;
newNode->value = value; //调整forward指针
for(int i = level; i >= ; --i){
x = update[i];
newNode->forward[i] = x->forward[i];
x->forward[i] = newNode;
} //更新元素数目
++size_; return true;
}
}

(五)删除

删除操作类似于插入操作,包含如下3步:1、查找到需要删除的结点 2、删除结点  3、调整指针

图7:删除操作示意图(感谢博主qiang.xu 来自cnblogs)

bool SkipList::Delete(const KeyType& key,
ValueType& value){
Node update[MAX_LEVEL];
int i;
Node x = list_->header;
//寻找要删除的结点
for(i = list_->level; i >= ; --i){
while(x->forward[i]->key < key){
x = x->forward[i];
} update[i] = x;
} x = x->forward[];
//结点不存在
if(x->key != key){
return false;
}else{
value = x->value;
//调整指针
for(i = ; i <= list_->level; ++i){
if(update[i]->forward[i] != x)
break;
update[i]->forward[i] = x->forward[i];
}
//删除结点
free(x);
//更新level的值,有可能会变化,造成空间的浪费
while(list_->level >
&& list_->header->forward[list_->level] == NIL_){
--list_->level;
} //更新链表元素数目
--size_; return true;
}
}

(六)随机数生成器

再向跳跃表中插入新的结点时候,我们需要生成该结点的层数,使用的就是随机数生成器,随机的生成一个层数。这部分严格意义上讲,不属于跳跃表的一部分。随机数生成器说简单很简单,说难很也很难,看你究竟是否想生成随机的数。可以采用c语言中srand以及rand函数,也可以自己设计随机数生成器。

此部分我们采用levelDB随机数生成器:

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors. #include <stdint.h> //typedef unsigned int uint32_t;
//typedef unsigned long long uint64_t; // A very simple random number generator. Not especially good at
// generating truly random bits, but good enough for our needs in this
// package.
class Random {
private:
uint32_t seed_;
public:
explicit Random(uint32_t s) : seed_(s & 0x7fffffffu) {
// Avoid bad seeds.
if (seed_ == || seed_ == 2147483647L) {
seed_ = ;
}
}
uint32_t Next() {
static const uint32_t M = 2147483647L; // 2^31-1
static const uint64_t A = ; // bits 14, 8, 7, 5, 2, 1, 0
// We are computing
// seed_ = (seed_ * A) % M, where M = 2^31-1
//
// seed_ must not be zero or M, or else all subsequent computed values
// will be zero or M respectively. For all other values, seed_ will end
// up cycling through every number in [1,M-1]
uint64_t product = seed_ * A; // Compute (product % M) using the fact that ((x << 31) % M) == x.
seed_ = static_cast<uint32_t>((product >> ) + (product & M));
// The first reduction may overflow by 1 bit, so we may need to
// repeat. mod == M is not possible; using > allows the faster
// sign-bit-based test.
if (seed_ > M) {
seed_ -= M;
}
return seed_;
}
// Returns a uniformly distributed value in the range [0..n-1]
// REQUIRES: n > 0
uint32_t Uniform(int n) { return (Next() % n); } // Randomly returns true ~"1/n" of the time, and false otherwise.
// REQUIRES: n > 0
bool OneIn(int n) { return (Next() % n) == ; } // Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
uint32_t Skewed(int max_log) {
return Uniform( << Uniform(max_log + ));
}
};

其中核心的是 seed_ = (seed_ * A) % M这个函数,并且调用一次就重新更新一个种子seed。以达到随机性。

根据个人喜好,自己可以独立设计随机数生成器,只要能够返回一个随机的数字即可。

(七)释放表

释放表的操作比较简单,只要像单链表一样释放表就可以,释放表的示意图8如下:

      图8:释放表

void SkipList::FreeList(){
Node p = list_->header;
Node q;
while(p != NIL_){
q = p->forward[];
free(p);
p = q;
}
free(p);
free(list_);
}

(八)性能比较

我们对跳跃表、平衡树等进行比较,如下图9所示:

  图9:性能比较图

从中可以看出,随机跳跃表表现性能很不错,节省了大量复杂的调节平衡树的代码。

浅析SkipList跳跃表原理及代码实现的更多相关文章

  1. 【转】浅析SkipList跳跃表原理及代码实现

    SkipList在Leveldb以及lucence中都广为使用,是比较高效的数据结构.由于它的代码以及原理实现的简单性,更为人们所接受.首先看看SkipList的定义,为什么叫跳跃表? "S ...

  2. 跳跃表-原理及Java实现

    跳跃表-原理及Java实现 引言: 上周现场面试阿里巴巴研发工程师终面,被问到如何让链表的元素查询接近线性时间.笔者苦思良久,缴械投降.面试官告知回去可以看一下跳跃表,遂出此文. 跳跃表的引入 我们知 ...

  3. 【Redis】跳跃表原理分析与基本代码实现(java)

    最近开始看Redis设计原理,碰到一个从未遇见的数据结构:跳跃表(skiplist).于是花时间学习了跳表的原理,并用java对其实现. 主要参考以下两本书: <Redis设计与实现>跳表 ...

  4. 小白也能看懂的Redis教学基础篇——朋友面试被Skiplist跳跃表拦住了

    各位看官大大们,双节快乐 !!! 这是本系列博客的第二篇,主要讲的是Redis基础数据结构中ZSet(有序集合)底层实现之一的Skiplist跳跃表. 不知道那些是Redis基础数据结构的看官们,可以 ...

  5. redis skiplist (跳跃表)

    redis skiplist (跳跃表) 概述 redis skiplist 是有序的, 按照分值大小排序 节点中存储多个指向其他节点的指针 结构 zskiplist 结构 // 跳跃表 typede ...

  6. 用Python深入理解跳跃表原理及实现

    最近看 Redis 的实现原理,其中讲到 Redis 中的有序数据结构是通过跳跃表来进行实现的.第一次听说跳跃表的概念,感到比较新奇,所以查了不少资料.其中,网上有部分文章是按照如下方式描述跳跃表的: ...

  7. SkipList 跳跃表

    引子 考虑一个有序表:14->->34->->50->->66->72 从该有序表中搜索元素 < 23, 43, 59 > ,需要比较的次数分别为 ...

  8. 【Redis】skiplist跳跃表

    有序集合Sorted Set zadd zadd用于向集合中添加元素并且可以设置分值,比如添加三门编程语言,分值分别为1.2.3: 127.0.0.1:6379> zadd language 1 ...

  9. 算法: skiplist 跳跃表代码实现和原理

    SkipList在leveldb以及lucence中都广为使用,是比较高效的数据结构.由于它的代码以及原理实现的简单性,更为人们所接受. 所有操作均从上向下逐层查找,越上层一次next操作跨度越大.其 ...

随机推荐

  1. C# int.Parse()、int.TryParse()与Convert.ToInt32()的区别

    1.(int)是一种类型转换:当我们觟nt类型到long,float,double,decimal类型,可以使用隐式转换,但是当我们从long类型到int类型就需要使用显式转换,否则会产生编译错误. ...

  2. BITED-Windows8应用开发学习札记之二:Win8应用常用视图设计

    感觉自我表述能力有欠缺,技术也不够硬,所以之后的Windows8应用开发学习札记的文章就偏向于一些我认为较难的地方和重点了多有抱歉. 上节课是入门,这节课就已经开始进行视图设计了. Windows应用 ...

  3. jsp界面项目绝对路径问题

    方法一:直接采用绝对路径 (不推荐) 在JSP页面端,获得本项目的绝对地址(如果你的项目叫MyApp,那么获得到的地址就是 http://localhost:8080/MyApp/): 代码如下: & ...

  4. JS获得月最后一天和js得到一个月最大天数

    <html xmlns="http://www.w3.org/1999/xhtml" > <head> <title>标题页</title ...

  5. 从Mac的Finder中访问你的iCloud文档

    [从Mac的Finder中访问你的iCloud文档] 从OS X 10.7.2开始,iCloud就深入Mac当中,我们也可以在Finder中访问储存在iCloud中的文件,甚至当你拥有多台Mac的时候 ...

  6. 新 esb-cs-tool.jar 参数说明

    旧esb-cs-tool.jar 使用说明 : invoke(RequestBusinessObject requestBo) 旧参数说明: requestBo  : 封装好的请求参数大对象  Req ...

  7. Failed to load libGL.so in android

    使用命令:find / -name libGL.so 得到: /usr/lib/i386-linux-gnu/libGL.so /usr/lib/i386-linux-gnu/mesa/libGL.s ...

  8. 深入学习JavaScript对象

    JavaScript中,除了五种原始类型(即数字,字符串,布尔值,null,undefined)之外的都是对象了,所以,不把对象学明白怎么继续往下学习呢? 一.概述 对象是一种复合值,它将很多值(原始 ...

  9. SharePoint 2013的100个新功能之社交

    一:社会能力 SharePoint 2013引入了一个新东西叫做社会能力,使公司组织中的用户社会化协作.我的网站难以置信地做了改进以集成社会能力.除了我的网站,新的社区网站(新闻提要),关注用户和关注 ...

  10. 清除SQL Management Studio记住的用户名和密码

    SQL Server Management Studio 2008 delete the file C:\Users\%username%\AppData\Roaming\Microsoft\Micr ...