http://codeforces.com/contest/702

题意:n个点,n条边,每个点出边只有一条,问从每个点出发经过k条边的边权和,以及边权最小值

思路:

f[i][j] 第i个点出发,经过2^j条边后的相连点 其余类似

二进制巧妙解决问题应用太广了

 // #pragma comment(linker, "/STACK:102c000000,102c000000")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <sstream>
#include <string>
#include <algorithm>
#include <list>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
// #include <conio.h>
using namespace std;
#define pi acos(-1.0)
const int N = 1e5+;
const int MOD = 1e9+;
#define inf 0x7fffffff
typedef long long LL; void frein(){freopen("in.txt","r",stdin);}
void freout(){freopen("out.txt","w",stdout);}
inline LL read(){LL x=,f=;char ch=getchar();while(ch>''||ch<'') {if(ch=='-') f=-;ch=getchar();}while(ch>=''&&ch<='') { x=x*+ch-'';ch=getchar();}return x*f;}
const int M =; int f[N][M];
LL sum[N][M];
int mn[N][M];
int main(){
int n;
LL k;
n=read(),k=read();
for(int i=;i<n;i++) scanf("%d",&f[i][]);
for(int i=;i<n;i++) {scanf("%d",&sum[i][]);mn[i][]=sum[i][];}
for(int j=;j<M;j++){
for(int i=;i<n;i++){
f[i][j]=f[f[i][j-]][j-];
sum[i][j]=sum[f[i][j-]][j-]+sum[i][j-];
mn[i][j]=min(mn[i][j-],mn[f[i][j-]][j-]);
}
}
LL ans;
for(int i=;i<n;i++){
int v=i,minn=inf;
LL K=k;
ans=;
for(int j=M-;j>=;j--){
if((1LL<<j)<=K){
ans+=sum[v][j];
minn=min(minn,mn[v][j]);
v=f[v][j];
K-=(1LL<<j);
}
}
printf("%I64d %d\n",ans,minn);
}
return ;
}

codeforce 702E Analysis of Pathes in Functional Graph RMQ+二进制的更多相关文章

  1. codeforces 702E Analysis of Pathes in Functional Graph 倍增

    题目链接 给一个图, 然后给出每条边的权值和一个k值. 让你求出从每个点出发, 走k次能获得的边权的和以及边权的最小值. 用倍增的思想, 求出每个点走一次能到达的点, 权值和以及最小值, 走两次..四 ...

  2. CodeForces 702E Analysis of Pathes in Functional Graph

    倍增预处理. 先看一下这张图的结构,因为出度都是$1$,所以路径是唯一的,又因为每个点都有出度,所以必然有环,也就是一直可以走下去. 接下来我们需要记录一些值便于询问: 设$t[i][j]$表示从$i ...

  3. Codeforces Educational Codeforces Round 15 E - Analysis of Pathes in Functional Graph

    E. Analysis of Pathes in Functional Graph time limit per test 2 seconds memory limit per test 512 me ...

  4. CF702E Analysis of Pathes in Functional Graph

    倍增练习题. 基环树上倍增一下维护维护最小值和权值和,注意循环的时候$j$这维作为状态要放在外层循环,平时在树上做的时候一个一个结点处理并不会错,因为之前访问的结点已经全部处理过了. 时间复杂度$O( ...

  5. Codeforces 739D - Recover a functional graph(二分图匹配)

    Codeforces 题面传送门 & 洛谷题面传送门 首先假设我们已经填好了所有问号处的值怎样判断是否存在一个合法的构造方案,显然对于一种方案能够构造出合法的基环内向森林当且仅当: \(\fo ...

  6. Educational Codeforces Round 15 (A - E)

    比赛链接:http://codeforces.com/contest/702 A. Maximum Increase A题求连续最长上升自序列. [暴力题] for一遍,前后比较就行了. #inclu ...

  7. CF上的3道小题(1)

    CF上的3道小题 终于调完了啊.... T1:CF702E Analysis of Pathes in Functional Graph 题意:你获得了一个n个点有向图,每个点只有一条出边.第i个点的 ...

  8. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  9. 转债---Pregel: A System for Large-Scale Graph Processing(译)

    转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/   作者:Grzegorz Malewicz, Matthew ...

随机推荐

  1. React事件处理函数的bind复用和name复用

    一.bind复用 <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset=&qu ...

  2. yii2 学习中

    属性: public function __get($name) // 这里$name是属性名 { $getter = 'get' . $name; // getter函数的函数名 if (metho ...

  3. 机器学习 —— 概率图模型(推理:MAP)

    MAP 是最大后验概率的缩写.后验概率指的是当有一定观测结果的情况下,对其他随机变量进行推理.假设随机变量的集合为X ,观察到的变量为 e, W = X-e , AP = P(W|e). 后验概率和联 ...

  4. MFC中快速应用OpenCV教程

    论坛上看到非常经典的VS2008 + OpenCV 2.0下的配置过程: (这里用的是opencv2.0) 1. 文件 | 项目 | MFC | MFC应用程序 |(新名称如MFCtest)|next ...

  5. mongodb管理工具rockmongo

    mongodb的图像管理工具非常之多,我用的是rockmongo. RockMongo 是一个PHP5写的MongoDB管理工具. 主要特征: 使用宽松的New BSD License协议 速度快,安 ...

  6. jquery.post用法

    使用ajax在前端验证是否执行某个操作 jquery.post参数为 url,[data],[callback],[type] url:发送请求地址. data:待发送 Key/value 参数. c ...

  7. Java基础——关键字

    volatile 用volatile修饰的变量,线程在每次使用变量的时候,都会读取变量修改后的最的值.volatile很容易被误用,用来进行原子性操作. 对于volatile修饰的变量,jvm虚拟机只 ...

  8. java中四种操作(dom、sax、jdom、dom4j)xml方式详解与比较

    1)DOM(JAXP Crimson解析器)     DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信息片断的集合.这个层次结构允许开发人员在树中寻找特 ...

  9. 进程控制的一些api

    转自:http://blog.chinaunix.net/uid-26833883-id-3222794.html 1.fork() ,vfork() 创建进程 2‘ exec()类 在进程中执行其他 ...

  10. Oracle学习之集合运算

    一.集合运算操作符  UNION:(并集)返回两个集合去掉重复值的所有的记录  UNION ALL:(并集)返回两个集合去掉重复值的所有的记录 INTERSECT:(交集)返回两个集合的所有记录,重复 ...