多核运算

在iOS中concurrency编程的框架就是GCD(Grand Central Dispatch), GCD的使用非常简单。它把任务分派到不同的queue队列来处理。开发者把任务代码装到一个个block里面,操作系统把这些任务代码分派到不同的资源 里去处理,一个简单的例子来说,为什么初学者写tableview的时候,滑动列表时总会很卡,因为很多初学者把图片装载放到main thread主线程去执行,例如我们要滑动畅顺的话,iOS最快可以1秒内刷新60次,如何你的一个cell的文字和图片装载超过1/60秒的话,自然就 会卡。所以一般我们会把图片装载这些需要多点时间的移出main thread来处理,对于用GCD来说,就是把图片载入放到另外一个queue队列中来异步执行,当资源准备好了后,放回到main thread中显示出来。main thread在GCD中就是main queue。

创建一个新queue队列的代码:

dispatch_queue_t network_queue;

network_queue = dispatch_queue_create(“com.myapp.network”, nill);

例如,我们图片读取放到network_queue来进行异步执行

dispatch_async(network_queue, ^{

UIImage *cellImage = [self loadMyImageFromNetwork:image_url];

// 将图片cache到本地

[self cacheImage:cellImage];

…..

} );

dispatch_async的意思就是将任务进行异步并行处理,不一定需要一个任务处理完后才能处理下一个。以上代码 loadMyImageFromNetwork的意思就是从网络中读取图片,这个任务交给network_queue来处理。这样读取图片的时间过长也不 会阻塞主线程界面的处理。

当我们处理完图片后,应该更新界面,从queue的概念去设计,就是要将更新界面的代码放到main queue中去,因为iOS里面永远是主线程来刷新重画UI。所以代码应该为,

dispatch_async(network_queue, ^{

UIImage *cellImage = [self loadMyImageFromNetwork:image_url];

// 将图片cache到本地

[self cacheImage:cellImage];

// 回到主线程

dispatch_async(dispatch_get_main_queue(), ^{

// 显示图片到界面

[self displayImageToTableView:cellImage];

}];

} );

dispatch_get_main_queue() 函数就是返回主线程,^{} 封装的就是任务代码,这样嵌套方式就可以从一个队列queue,跳到另一个queue,就是这么简单。

我们一般可以把networking有关的代码放到一个queue,把图片resize的代码放到另外一个queue,处理完后更新界面,只需要嵌套跳回 到 main queue。这样加上几行代码,你的程序就可以利用到系统多核资源,把具体的调度工作交给了操作系统自己来分配。有了这样的代码,不管你的硬件是单核,双 核还是iMac的4核,甚至8核,都可以非常好地并行处理。

内存管理

我一直惊叹iOS和Objective-C内存处理能力,例如iPad版本的iWork,Pages应用就是一个内存处理技术应用的鬼斧神工之作。想想 256M内存的iPad,可以带来如此的华丽的界面同时获得如此流畅的用户体验,真是不简单。原因就是iOS一直提倡开发者在有限硬件资源内写出最优化的 代码,使用CPU最少,占用内存最小。(以下代码适用于iOS SDK 4.1, 由于新SDK 4.2对内存使用有新改动,所以可能有不同。。。)

尽量少的UIView层

通常我们喜欢把很多控件层(UILabel,UIButton,UIView等)一起放到一个大的UIView容器来显示我们的内容,这个方法一般是可以 的,但是如果要经常重新刷新内容的大区域界面,多数发生在iPad的应用中,这个方法会带来过多的内存使用和动画的延迟(比较卡),例 如,scrollview的动画比较卡,又或者,经常收到内存警告。其中一个重要原因是每个控件,特别是透明底的,会多次重新绘制(drawRect)过 多。其解决办法是,尽量将几个控件合并到一个层上来显示,这样系统会减少系统调用drawRect,从而带来性能上的提升。

很简单的一个例子,就是iNotes提供手写功能,用户可以在iPad屏幕上写出不同的笔画,开始的设计是,用户每写一划,iNotes就会生成一个新的 透明底UIView来保持这个笔画,用户写了10笔,系统就生产了10个UIView,每个view的大小都是整个屏幕的,以便用户的undo操作。这个 方案带来严重的内存问题,因为系统将每个层都保持一个bitmap图,一个像素需要4bit来算,一个层的大小就是 4x1024x768 ~ 3M, 10个层就是 10x3M = 30M,很明显,iPad很快爆出内存警告。

这个例子最后的方案是,所有笔画都画在同一个层,iNotes可以保存笔画的点进行undo操作。这样的方案就是无论用户画多少笔画,界面重画需要的资源都是一样的。

显示最佳尺寸的图片

很多程序员比较懒,网络上拿下来的图片,直接就用UIImageView将其显示给用户,这样的后果就是,程序需要一直保存着大尺寸的图片到内存。解决办法应该是先将图片缩小到需要显示的尺寸,释放大尺寸图片的内存,然后再显示到界面给用户。

尽量使用图片pattern,而不是一张大的图片

例如,很多界面设计者喜欢在界面上放一个大底图,但这个底图是老是占用着内存的,最佳方案是,设计出一个小的pattern图,然后用这个方案显示成底图。

UIImage *smallImage = [[UIImage alloc] initWithContentsOfFile:path];

backgroundView.backgroundColor = [UIColor colorWithPatternImage:smallImage];

[smallImage release];

使用完资源后,立即释放

一般objective-c的习惯是,用完的资源要立即释放,因为明白什么时候用完某个资源的是程序员你自己。例如,我们要读较大的图片,把它缩小后,显示到界面去。当大图片使用完成后,应该立即释放。代码如下:

UIImage *fullscreenImage = [[UIImage alloc] initWithContentOfFile:path];

UIImage *smallImage = [self resizeImage:fullscreenImage];

[fullscreenImage release];

imageView.image = smallImage;……

循环中大量生成的自动释放autorelease对象,可以考虑使用autorelease pool封装。代码范例:

for(UIView *subview in bigView.subviews) {

// 使用autorelease pool自动释放对象池

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];UIImageView *imageView = (UIImageView *)subview;

// subview处理代码

…….

// 销毁自动释放对象

[pool  drain];

}

自动释放对象池把每个循环内生成的临时对象使用完后立即释放

以上的意见是本人多年来编写iPad/iPhone程序的经验,另外iOS4.0的multi-tasking特性发布后,程序可以被调入后台运行,苹果 工程师的意见是,进入后台运行时,你的应用应该释放掉能释放的对象,尽量保持在16M左右,这样别的程序运行时才不容易把你的应用挤掉。

、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

iphone开发过程中,如果遇到加载大数据或者涉及到网络通信情况时,就需要在后台线程来完成这些事情。

除了NSThread之外,iphone还提供了一套GCD机制帮助开发者来实现多线程开发。

同NSThread相比,GCD的运行效率更高,开发更简单。

GCD的基础是dispatch queue和block。

1. block可以简单理解为一个任务。block在程序中的表现形式类似:

1 NSString * URL = @"......";

2

3 ^{

4

5     UIImage * image = [UIImage imageWithURL:URL];

6

7 };

从上例可以看出,block可以引用外部作用域的数据。这也是很block和普通函数的区别,block会保存当前执行的上下文。

2. dispatch queue是一个FIFO任务队列,可以将一些block压入这个队列中,系统会按照顺序来执行这些block。

dispatch_async()

系统中默认提供了三种dispatch queue:

a. Main. 如果某个block希望在主线程完成,可以将其push到main dispatch queue中。

b. Concurrent. 系统会自动创建三个不同优先级的dispatch queue。不能保证block严格按照顺序执行。

c. Serial. 需要用户手动创建,能够保证block严格按照push的顺序执行。

下面是一段异步加载网络图像的例子:

1 UIImageView * imageView = [[UIImageView alloc] init];

2

3   dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

4

5     UIImage * image = ;//网络拉取代码

6

7     dispatch_async(dispatch_get_main_queue (), ^{

8

9       imageView.image = image; // 在主线程中更新imageview

10

11     });

12

13   });

从以上代码可以看出,GCD的前后台线程同步通知机制要比NSThread优雅和方便很多。

iOS block并发的更多相关文章

  1. iOS -NSOperation并发编程

    http://www.cocoachina.com/game/20151201/14517.html http://blog.csdn.net/qinlicang/article/details/42 ...

  2. iOS Block界面反向传值

    在上篇博客 <iOS Block简介> 中,侧重解析了 iOS Block的概念等,本文将侧重于它们在开发中的应用. Block是iOS4.0+ 和Mac OS X 10.6+ 引进的对C ...

  3. iOS block从零开始

    iOS block从零开始 在iOS4.0之后,block横空出世,它本身封装了一段代码并将这段代码当做变量,通过block()的方式进行回调. block的结构 先来一段简单的代码看看: void ...

  4. iOS block 机制

    本文要将block的以下机制,并配合具体代码详细描述: block 与 外部变量 block 的存储域:栈块.堆块.全局块 定义 块与函数类似,只不过是直接定义在另一个函数里,和定义它的那个函数共享同 ...

  5. ios Block详细用法

    ios Block详细用法 ios4.0系统已开始支持block,在编程过程中,blocks被Obj-C看成是对象,它封装了一段代码,这段代码可以在任何时候执行.Blocks可以作为函数参数或者函数的 ...

  6. iOS Block的本质(四)

    iOS Block的本质(四) 上一篇文章iOS Block的本质(三)中已经介绍过block变量的捕获,本文继续探寻block的本质. 1. block内修改变量的值 int main(int ar ...

  7. # iOS Block的本质(三)

    iOS Block的本质(三) 上一篇文章iOS Block的本质(二)中已经介绍过block变量的捕获,本文继续探寻block的本质. 1. block对对象变量的捕获,ARC 环境 block一般 ...

  8. iOS Block的本质(二)

    iOS Block的本质(二) 1. 介绍引入block本质 通过上一篇文章Block的本质(一)已经基本对block的底层结构有了基本的认识,block的底层就是__main_block_impl_ ...

  9. iOS Block的本质(一)

    iOS Block的本质(一) 1.对block有一个基本的认识 block本质上也是一个oc对象,他内部也有一个isa指针.block是封装了函数调用以及函数调用环境的OC对象. 2.探寻block ...

随机推荐

  1. [itint5]跳马问题加强版

    http://www.itint5.com/oj/#12 首先由跳马问题一,就是普通的日字型跳法,那么在无限棋盘上,任何点都是可达的.证法是先推出可以由(0,0)到(0,1),那么由对称型等可知任何点 ...

  2. Java中List的排序

    第一种方法,就是list中对象实现Comparable接口,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 ...

  3. 最短路径算法之一——Floyd算法

    Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i ...

  4. Yii CActiveForm

    http://blog.sina.com.cn/s/blog_685213e70101mo4i.html 文档: http://www.yiiframework.com/doc/api/1.1/CAc ...

  5. 【HDOJ】4366 Successor

    基本思路是将树形结构转换为线性结构.然后,所求即为一个区间内大于abi的最大的loy指向的ID.将结点按照abi降序排序,注意abi可能相等.然后,使用线段树单点更新,区间查询可解. /* 4366 ...

  6. 【转】The final local variable xxx cannot be assigned, since it is defined in an enclosing type

    文地址:http://blog.163.com/benben_long/blog/static/199458243201481102257544/ 本文就自己编程时候遇到的一个问题,简要描述一下,并提 ...

  7. 八大Webkit内核浏览器

    列举出时下最流行的Webkit内核浏览器,所以我们并不会做出评测和对比.PS:本文列举的浏览器有一部分为IE+Webkit双核浏览器,如果您对其他IE内核浏览器很感兴趣<抛弃数据!用体验和感觉告 ...

  8. UVa 12096 (STL) The SetStack Computer

    题意: 有一个集合栈计算机,栈中的元素全部是集合,还有一些相关的操作.输出每次操作后栈顶集合元素的个数. 分析: 这个题感觉有点抽象,集合还能套集合,倒是和题中配的套娃那个图很贴切. 把集合映射成ID ...

  9. Java集群优化——dubbo+zookeeper构建高可用分布式集群

    不久前,我们讨论过Nginx+tomcat组成的集群,这已经是非常灵活的集群技术,但是当我们的系统遇到更大的瓶颈,全部应用的单点服务器已经不能满足我们的需求,这时,我们要考虑另外一种,我们熟悉的内容, ...

  10. 百度分享不支持https的解决方案

    站点自从开启 https 之后 ,百度分享就不能用了!但是又寻找不到类似百度分享的替代品.. 怎么办呢?要如何解决 百度分享不支持https的问题呢, 跟着博主动动手,让你百度分享仍然能在https下 ...