问题描述:

给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 。

思路分析:

动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串,是否是回文串。

则根据回文的规则我们可以知道:

如果s[i] == s[j] 那么是否是回文决定于 dp[i+1][ j - 1]

当 s[i] != s[j] 的时候, dp[i][j] 直接就是 false。

动态规划的进行是按照字符串的长度从1 到 n推进的。

DP算法实现:

 package com.ysw.test;

 import java.util.Scanner;

 /*
* 问题描述:
* 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,
* 而且存在唯一的最长回文子串 。
*/
public class LongestPalindrome { /**
* @param args
*/
public static void main(String[] args) {
// 从键盘读入字符串
String str = null;
Scanner reader = new Scanner(System.in);
str = reader.nextLine();
System.out.println(getLongestPalindrome(str));
} /**
* 此方法返回s的最长回文串
*
* @param str
* @return
*/
private static String getLongestPalindrome(String str) { boolean dp[][];
// 如果字符串的长度为0,则认为str的最长回文串为空字符串
if (str.length() == 0) {
return "";
}
// 字符串str长度为1.则字符串本身就是一个最长回文串
if (str.length() == 1) {
return str;
}
// dp[i][j],表示字符串str从str[i]到str[j]的子串为最长回文子串
dp = new boolean[str.length()][str.length()];
// 记录已经找到的最长回文子串的长度
int maxLen = 1;
// 记录最长回文子串的起点位置和终点位置
int start = 0, end = 0;
// 动态规划的进行是按照字符串的长度从1 到 n推进的,k表示正在判断的子串的长度
// 用于和已知的子串的长度maxLen进行比较
int k;
// 找出str的所有子串的dp对应的boolean值,初始化过程
for (int i = 0; i < str.length(); i++) {
for (int j = 0; j < str.length(); j++) {
// 当i==j的时候,只有一个字符的字符串
// 当i>j的时候认为是空串,dp[i][j]
if (i >= j) {
dp[i][j] = true;
} else {
dp[i][j] = false;
}
}
} // 我在这里犯了一个幼稚的错误,把i、j的定义放在了for循环中,在else{}中是访问不到的
// 运行程序报java.lang.StringIndexOutOfBoundsException: String index out of
// range错误
int i, j;
for (k = 1; k < str.length(); k++) {
for (i = 0; i + k < str.length(); i++) { j = i + k;
if (str.charAt(i) != str.charAt(j)) {
dp[i][j] = false;
} else {
dp[i][j] = dp[i + 1][j - 1];
if (dp[i][j]) {
// 判断找到的子串的长度是否大于我们已知的最长子串的长度
if (k + 1 > maxLen) {
// 记录最长回文子串
maxLen = k + 1;
// 记录子串的起始位置,因为后面的函数subString(int beginIndex,int
// endIndex)函数要用到
start = i;
end = j;
}
}
}
}
}
return str.substring(start, end + 1);
}
}

【注意】:函数subString返回一个新字符串,它是此字符串的一个子字符串。该子字符串从指定的 beginIndex 处开始,直到索引 endIndex - 1 处的字符。因此,该子字符串的长度为 endIndex-beginIndex

最长回文子串(Longest Palindromic Substring)-DP问题的更多相关文章

  1. [译+改]最长回文子串(Longest Palindromic Substring) Part II

    [译+改]最长回文子串(Longest Palindromic Substring) Part II 原文链接在http://leetcode.com/2011/11/longest-palindro ...

  2. [译]最长回文子串(Longest Palindromic Substring) Part I

    [译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...

  3. 领扣-5 最长回文子串 Longest Palindromic Substring MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  4. [Swift]LeetCode5. 最长回文子串 | Longest Palindromic Substring

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. LeetCode.5-最长回文子串(Longest Palindromic Substring)

    这是悦乐书的第342次更新,第366篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Medium级别的第3题(顺位题号是5).给定一个字符串s,找到s中最长的回文子字符串. 您可以假设s ...

  6. 【算法】最长回文子串 longest palindrome substring

    对于字符串S, 要找到它最长的回文子串,能想到的最暴力方法,应该是对于每个元素i-th都向左向右对称搜索,最后用一个数组span 记录下相对应元素i-th为中心的回文子串长度. 那么问题来了: 1. ...

  7. [Swift]LeetCode516. 最长回文子序列 | Longest Palindromic Subsequence

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  8. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  9. 转载:LeetCode:5Longest Palindromic Substring 最长回文子串

    本文转自:http://www.cnblogs.com/TenosDoIt/p/3675788.html 题目链接 Given a string S, find the longest palindr ...

随机推荐

  1. (六)CSS伪元素

    CSS伪元素用于向某些选择器设置特殊效果. 伪元素的用法和伪类相似: selector:pseudo-element {property:value;} CSS类也可以与伪元素配合使用: select ...

  2. LingPipe-TextClassification(文本分类)

    What is Text Classification? Text classification typically involves assigning a document to a catego ...

  3. *像word一样编辑复杂的文本:SpannableString 样式详介

    简介: 使用android.text.Spanned; android.text.SpannableString; android.text.SpannableStringBuilder; 和 and ...

  4. BZOJ 3143 游走(高斯消元)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3143 题意:一个无向连通图,顶点从1编号到n,边从1编号到m.小Z在该图上进行随机游走, ...

  5. LA 4329 (树状数组) Ping pong

    第一次写树状数组,感觉那个lowbit位运算用的相当厉害. 因为-x相当于把x的二进制位取反然后整体再加上1,所以最右边的一个1以及末尾的0,取反加一以后不变. 比如1000取反是0111加一得到10 ...

  6. BZOJ2073: [POI2004]PRZ

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2073 题解:跟风Xs酱! 数据范围这么小,肯定是状压DP.咦?怎么枚举子集?... 跪烂Xs: ...

  7. BMP图像格式

    BMP(全称Bitmap)是Window操作系统中的标准图像文件格式,可以分成两类:设备相关位图(DDB)和设备无关位图(DIB),使用非常广.它采用位映射存储格式,除了图像深度可选以外,不采用其他任 ...

  8. 【转】iOS中定时器NSTimer的使用

    原文网址:http://www.cnblogs.com/zhulin/archive/2012/02/02/2335866.html 1.初始化 + (NSTimer *)timerWithTimeI ...

  9. android bin目录下的.ap_是神马文件?

    resources.ap_ resources翻译过来是资源的意思 应该就是一种中间文件,可以改成rar.zip等压缩文件的类型,里面包含res.AndroidMainfest.xml.resourc ...

  10. asp.net夜话之十一:web.config详解

    转:http://blog.csdn.net/zhoufoxcn/article/details/3265141 在开发中经常会遇到这样的情况,在部署程序时为了保密起见并不将源代码随项目一同发布,而我 ...