这是bestcorder 67 div1 的1003 当时不会做 看了赛后官方题解,然后翻译了一下就过了,而且速度很快,膜拜官方题解。。

附上官方题解:

the soldier of love

我们注意到我们求的是每一组至少覆盖一个点的线段数量。

那么我们可以先求一个点都没有覆盖的的线段数量,在用nn减去即可。

我们把所有点和线段先这样离线处理:

对于每个线段,在他的右端点处记上一个左端点的标记。

对于每组点,在除了第一个点之外的其他点上,记上一个前一个点的标记,同时记录下这个点的编号。

然后从1到10^6扫一遍数轴,对每个点处理所有标记,先处理点的。

对于每一个点,找到他的前一个点,把树状数组中[p_{now} - 1, p_{pre} + 1][p​now​​−1,p​pre​​+1]中的和累积到这个点的编号的答案里面。

然而这个树状数组是记录什么的呢,对于每个点,找到他的线段标记,也就是这个线段的左端点,把左端点的位置在树状数组里面累加。

也就是说,对当前这个位置,树状数组记录的都是右端点在当前点左边的所有线段的左端点的累加和。 就这样O((n+m_sum)log10^{6})O((n+m​s​​um)log10​6​​)的时间复杂度解决。

注:还有一点题解的做法,你记录3e5的点的数组需要开二倍,这一点很重要,我觉得好恶心,因为数组开小了,交到杭电,返回T,让我一度对官方题解产生了怀疑

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<cstdlib>
#include<vector>
#include<queue>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int maxn=+;
const int maxm=+;
struct Point
{
int x,pre,bel;
bool operator<(const Point &e)const
{
return x<e.x;
}
} o[maxm*];
struct Seg
{
int l,r;
bool operator<(const Seg &e)const
{
return r<e.r;
}
} e[maxm];
int c[maxn];
int lowbit(int x)
{
return x&(-x);
}
void add(int i)
{
while(i<maxn)
{
++c[i];
i+=lowbit(i);
}
}
int query(int i)
{
int sum=;
while(i>)
{
sum+=c[i];
i-=lowbit(i);
}
return sum;
}
int ans[maxm];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(c,,sizeof(c));
memset(ans,,sizeof(ans));
for(int i=; i<=n; ++i)
scanf("%d%d",&e[i].l,&e[i].r);
int cnt=;
for(int i=; i<=m; ++i)
{
int k;
scanf("%d",&k);
for(int j=; j<k; ++j)
{
scanf("%d",&o[++cnt].x);
o[cnt].bel=i,o[cnt].pre=-;
if(j==)continue;
o[cnt].pre=o[cnt-].x;
}
o[++cnt].x=1e6+;
o[cnt].bel=i,o[cnt].pre=o[cnt-].x;;
}
sort(e+,e++n);
sort(o+,o++cnt);
int now=;
for(int i=; i<=cnt; ++i)
{
while(now<=n&&e[now].r<o[i].x)
{
add(e[now].l);
now++;
}
ans[o[i].bel]+=query(o[i].x-)-query(o[i].pre);;
}
for(int i=;i<=m;++i)
printf("%d\n",n-ans[i]);
}
return ;
}

HDU 5603 the soldier of love 离线+树状数组的更多相关文章

  1. HDU 5869 Different GCD Subarray Query 离线+树状数组

    Different GCD Subarray Query Problem Description   This is a simple problem. The teacher gives Bob a ...

  2. hdu 4605 Magic Ball Game (在线主席树/离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球 ...

  3. HDU 2852 KiKi's K-Number(离线+树状数组)

    题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...

  4. 区间的关系的计数 HDU 4638 离线+树状数组

    题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了 ...

  5. HDU - 4777 离线树状数组

    离线树状数组搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #de ...

  6. HDU 4417 离线+树状数组

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. POJ 3416 Crossing --离线+树状数组

    题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少 ...

  8. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组

    题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...

  9. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组(转)

    转载自:http://www.cnblogs.com/icode-girl/p/5744409.html 题目链接:CF #365 (Div. 2) D - Mishka and Interestin ...

随机推荐

  1. 语音合成,语音播报功能(系统)-b

    第一次接触语音合成,只实现了很简单的功能,记录一下,以后免得去网上四处找资料 最近在做高德地图导航的时候有个语音播报的功能,高德sdk已经提供了要语音的字符串.我要做的就是把这些字符串读出声音来即可. ...

  2. MITK-Qt4.8.4(x64)+VS2012+Win7_X64 编译记录

    本文参考 http://blog.csdn.net/lanxuxml/article/details/9232529(中文) http://docs.mitk.org/nightly-qt4/Buil ...

  3. 深入浅出百度地图API开发系列(2):创建地图

    上一篇文章里,先介绍了一下百度地图API开发所涉及到的一些基础概念,包括投影,坐标系等基础概念,再有了这些基础后,我们可以开始开发自己的web地图了.先来个代码示例(建议大家都是用百度地图API大众版 ...

  4. c#用反射原理递归遍历复杂实体对象

    之前在网上看到的都是遍历那种比较简单的实体对象,但是如果有实体嵌套,甚至是包含有List<XXInfo>这种属性的时候就没有办法处理了.通过递归遍历的方式可以完成对复杂实体对象的所有属性的 ...

  5. 基于注解风格的Spring-MVC的拦截器

    基于注解风格的Spring-MVC的拦截器 Spring-MVC如何使用拦截器,官方文档只给出了非注解风格的例子.那么基于注解风格如何使用拦截器呢? 基于注解基本上有2个可使用的定义类,分别是Defa ...

  6. javaweb学习总结(四十六)——Filter(过滤器)常见应用

    一.统一全站字符编码 通过配置参数charset指明使用何种字符编码,以处理Html Form请求参数的中文问题 1 package me.gacl.web.filter; 2 3 import ja ...

  7. 去除右键菜单opendlg

    环境:windows8.1专业版 未知文件类型,右键会多出一个opendlg的选项!下面是移除的方法: 将下面的内容复制到记事本,并另存为XXX .reg,导入注册表即可!   Windows Reg ...

  8. Android之AlertDialog.Builder详解

    import android.app.Activity; import android.app.AlertDialog; import android.content.DialogInterface; ...

  9. [译]再次对比TCP与UDP

    免责声明:和往常一样,此文章的观点都属于‘No Bugs’Hare(译注:一个网站) ,也许不一定和翻译者或者Overload编辑的意见一致.同时,翻译者从Lapine翻译到英语也具有一定的难度.除此 ...

  10. ISE综合后得到的RTL图如何与硬件对应起来,怎么知道每个element的功能

    2013-06-23 21:34:03 要知道“我写的这段代码会综合成什么样的电路呢”,就要搞清楚RTL图中每个模块的功能,从而将代码与硬件对应,判断综合后的电路是否与预期的一致.如何做到? 之前查了 ...