【转】C/C++除法实现方式及负数取模详解
原帖:http://blog.csdn.net/sonydvd123/article/details/8245057
一、下面的题目你能全做对吗?
1.7/4=?
2.7/(-4)=?
3.7%4=?
4.7%(-4)=?
5.(-7)/4=?
6.(-7)%4=?
7.(-7)/(unsigned)4=?
答案:
1
-1
3
3
-1
-3
1073741822
如过你全部答对,你可以无视后面的内容……
二、除法的取整分类
除法的取整分为三类:向上取整、向下取整、向零取整。
1.向上取整:向+∞方向取最接近精确值的整数。在这种取整方式下,7/4=2,7/(-4)=-1,6/3=2,6/(-3)=-2
2.向下取整:向-∞方向取最接近精确值的整数。在这种取整方式下,7/4=1,7/(-4)=-2,6/3=2,6/(-3)=-2
3.向零取整:向0方向取最接近精确值的整数,换言之就是舍去小数部分,因此又称截断取整。在这种取整方式下,7/4=1,7/(-4)=-1,6/3=2,6/(-3)=-2
通过观察可以发现,无论是向上取整还是向下取整,(-a)/b==-(a/b)都不一定成立。这给程序设计者带来了极大的麻烦。而对于向零取整,(-a)/b==-(a/b)是成立的,以此,C/C++采用这种取整方式。
三、负数取模
回想小学的公式:被除数÷除数=商……余数。
由此可知,余数=被除数-商×除数 (*)
对C/C++而言,(*)式依然成立。并且,该式是解决负数取模问题的关键。
例一:7%(-4)=?
解:由C/C++向零取整的整除方式可知,7/(-4)=-1;由(*)式知,余数=7-(-4)*(-1)=3.所以,7%(-4)=3
例二:(-7)%4=?
解:由C/C++向零取整的整除方式可知,(-7)/4=-1;由(*)式知,余数=(-7)-4*(-1)=-3.所以,(-7)%4=-3
例三:(-7)%(-4)=?
解:由C/C++向零取整的整除方式可知,(-7)/(-4)=1;由(*)式知,余数=(-7)-(-4)*1=-3.所以,(-7)%(-4)=-3
四、相关知识的拓展
1.对于有符号整数与无符号整数间的除法,C/C++会将有符号整数转换为无符号整数,需要特别注意的是,符号位并没有丢失,而是变成了数据位参与运算。这就是(-7)/(unsigned)4不等于-1,而等于1073741822的原因。
2.编译器对除法的优化
①在“无优化”条件下,编译器会在不影响正常调试的前提下,对除法进行简单的优化。
A.“常量/常量”型除法:编译器会直接计算出结果。
B.“变量/变量”型除法:无优化。
C.“变量/常量”型除法:若常量≠2^n,无优化;否则,除法将被转换为右移运算。由于由右移运算实现的整除实质上是向下取整,所以编译器会通过一些附加的指令在不产生分支结构的情况下将向下取整转换为向零取整。
以【变量/2^3】为例,反汇编代码如下:
mov eax,被除数
cdq ;若eax<0,则edx=0xFFFFFFFF;否则edx=0
and edx,7 ;若eax<0,则edx=7;否则edx=0
add eax,edx ;若eax<0,【(eax+7)/(2^3)】向下取整的值 与 【eax/(2^3)】向零取整的值相等,从而实现向零取整
sar eax,3 ;右移,完成除法
②在“O2优化”条件下,“变量/常量”型除法中,常量若≠2^n,也可以优化。此时,除法将被转换为乘法与右移的结合形式。例如,a/b=a*(1/b)=a*((2^n)/b)*(1/(2^n)),其中,((2^n)/b为MagicNumber,由编译器在编译过程中算出。这样a/b就变成了(a*MagicNumber)>>n,n的值由编译器选取。需要注意的是,本公式只是除法优化中的一个典型代表,编译器会根据除数对公式进行调整,但基本形式与原理是类似的。
转载地址:http://tieba.baidu.com/p/1881961036
——————————————————————————————————————————
以下摘录自C++ Primer(P130)
操作符%称为“求余”或“求模”操作符,该操作符的操作数只能为整型。
如果两个操作数为正,结果也为正;如果两个操作数都为负数,结果也为负数;如果一个操作数为正数,一个操作数为负数,求模结果的符号取决于机器。
当操作数中有一个为负,一个为正是,求模操作结果值的符号可依据分子(被除数)或分母(除数)的符号而定。如果求模的结果随分子的符号,则除出来的值向零一侧取整;如果求模与分母的符号匹配,则除出来的值向负无穷大一侧取整。
(VC貌似是根据左操作数来确定求模操作的符号)
【转】C/C++除法实现方式及负数取模详解的更多相关文章
- C/C++除法实现方式及负数取模详解
一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: ...
- C++负数取模
预习: r=余数 a=被除数 b=除数 c=商 a/b=c........r r=a-(a/b)*b 一.下面的题目你能全做对吗?1.7/4=?2.7/(-4)=?3.7%4=?4.7%(-4)=?5 ...
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
- JAVA高级架构师基础功:Spring中AOP的两种代理方式:动态代理和CGLIB详解
在spring框架中使用了两种代理方式: 1.JDK自带的动态代理. 2.Spring框架自己提供的CGLIB的方式. 这两种也是Spring框架核心AOP的基础. 在详细讲解上述提到的动态代理和CG ...
- python中的负数取模问题(一个大坑)
先来看一段代码 这是什么情况?为什么会出现这种结果.我们再来看看其它语言的执行结果 我们用golang.js.c分别算了一下,结果得到的结果都是一致的,但是python为啥不一样呢? 其实之所以这么做 ...
- SEO方式之HTTPS 访问优化详解
SEO到底要不要做HTTPS?HTTPS对SEO的重要性 正方观点 1.HTTPS具有更好的加密性能,避免用户信息泄露: 2.HTTPS复杂的传输方式,降低网站被劫持的风险: 3.搜索引擎已经全面支持 ...
- Spring中的注入方式 和使用的注解 详解
注解:http://www.cnblogs.com/liangxiaofeng/p/6390868.html 注入方式:http://www.cnblogs.com/java-class/p/4727 ...
- ExtJS布局方式(layout)图文详解
Auto默认布局 不给下级组件指定大小和位置 Absolute绝对布局 可使用坐标(x.y)进行布局 Accordion手风琴布局 实现Accordion效果的布局,也可叫可折叠布局.也就是说使用该布 ...
- Form_Form页面跳转的四种方式(open_form, call_form, new_form, fnd_function)详解(汇总)
2014-06-29 Created By BaoXinjian
随机推荐
- 选择排序O(n^2)与快速排序O(nlogn)的优越性代码体现
随机函数生成一个超大数组: [code]: #include <iostream> #include <stdio.h> #include<time.h> #inc ...
- 自己利用jQuery实现的win8图标浮动更新
在学校参加网页设计大赛时,由于美工设计的刚好是metro风格的(其实她们从来没有用过win8也没有了解过),而本人也很喜欢win8的界面,于是就做了一个metro风格的作品.虽然最终没能获奖,但是觉得 ...
- Linux学习笔记(4)-文本编辑器vi的使用
vi的三种编辑模式 命令模式(Command mode) 在此模式下可以控制光标的移动,可以删除字符,删除行,还可以对某个段落进行复制和移动 输入模式(Insert mode) 只有在此模式下,可以输 ...
- 1064: [Noi2008]假面舞会 - BZOJ
Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...
- [mock]12月27日
一开始介绍项目,最后的反馈是,还是说得不清楚,需要再准备准备. 然后两道题,第一题是有个数组,有2*n个数字,从1~n.比如n=3的数组,{1,2,2,3,1,3}.然后两两相同的数字删除,每次删除得 ...
- HeadFirst设计模式之代理模式
一. 1.The Proxy Pattern provides a surrogate or placeholder for another object to control access to i ...
- Android:实现退出确认对话框
在Android平台上捕获Back键的事件,super.onBackPressed()是执行系统的默认动作,就是退出当前activity,我们要做的就是重写onBackPressed()函数, pub ...
- POJ2240——Arbitrage(Floyd算法变形)
Arbitrage DescriptionArbitrage is the use of discrepancies in currency exchange rates to transform o ...
- P117、面试题18:树的子结构
题目:输入两棵二叉树A和B,判断B是不是A的子结构.二叉树结点的定义如下:struct BinaryTreeNode{ int m_nValue; BinaryTreeNod ...
- Android 签名(1)为什么要签名
所有的应用程序都必须有数字证书,Android系统不会安装一个没有数字证书的应用程序 签名可以: 1,用特权,2完整性鉴别,3安全保证, 1,专用权限或特权要签名 一些特权要经签名才允许.签名可用:S ...