[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)
Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- ASP.NET MVC 简易在线书店
写这篇博客的目的是为了记录自己的思想,有时候做项目做着做着就不知道下面该做什么了,把项目的具体流程记录下来,培养好习惯. 创建MVC项目 创建控制器StoreController public cla ...
- [转载]iOS本地推送-备用
第一步:创建本地推送// 创建一个本地推送UILocalNotification *notification = [[[UILocalNotification alloc] init] autorel ...
- Mvc设计模型与三层架构
Mvc(Model-View-Controller):是软件架构的一中设计模式,对软件进行分割成3个层次:视图.模型.控制. 实现对软件的一种动态的设计,并且容易对软件进行扩展.后期的修改,使某些程序 ...
- ExtJs 4.2.1 报错:Uncaught TypeError: Cannot call method 'getItems' of null
做项目的时候遇到这个问题,搞了一上午终于解决了,让我们看看是什么问题: buttons: [ { text: '保存', icon: '../../../Images/extjs/disk.png', ...
- uva 558 Bellman_Ford
Bellman_Ford算法 求图中是否存在负权值的回路 若图中不存在 则最短路最多经过n-1个结点 若经过超过n-1个节点 则存在负权值的回路 此图永远无法找到最短路 每条边最多 ...
- 如何优化 Android Studio 启动、编译和运行速度?
作为一名 Android 程序员,选择一个好的 IDE 工具可以使开发变得非常高效,很多程序员喜欢使用 Google 的 Android Studio来进行开发,但使用起来有时会出现卡顿等问题.本文介 ...
- hdu 2147 kiki's game 博弈论
找规律的博弈论!! 很容易发现当n,m都为奇数时先手必败! 代码如下: #include<iostream> #include<stdio.h> #define I(x,y) ...
- 服务器部署_linux下部署jprofiler简单备忘
1.windows安装jprofiler 2.linux下安装jprofiler服务端,记好安装路径.假设是安装在/ex/bin/下 3. 配置tomcat的启动sh文件,在后面加入以下参数: -a ...
- Spring下载地址
spring官方网站改版后,不提供直接下载,而是通过maven下载,所以将直接下载的地址给出: http://maven.springframework.org/release/org/springf ...
- thinkphp URL相关
具体详见tp文档. 此处仅做学习笔记. 后缀配置: // 模板文件后缀名 'TMPL_TEMPLATE_SUFFIX'=>'.html', // 伪静态文件后缀名 'URL_HTML_SUFFI ...