Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)

Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. angularApi网站用vue重构

    最近在博客园上看到不少关于vue的文章但感觉都是在简单原生写法上,真正vue在实际开发中的优点组件化,spa应用,路由好像都没涉及到,我在学angular1的时候发现没有中文版的api,于是本人不才弄 ...

  2. 过滤菜鸟的iOS面试题-b

    网上已经有很多针对各种知识点的面试题,面试时有些人未必真正理解也能通过背题看上去很懂.我自己总结了4道面试题,好快速的判断这个人是否是一个合格的工程师,欢迎大家点评. 1.struct和class的区 ...

  3. Telerik_2012_Q3 (已破解)全套下载链接

    1.Telerik_OpenAccess_ORM_2012_3_1012_SDK.zip (暂未提供下载) 2. Telerik_OpenAccess_ORM_2012_3_1012.zip 3. T ...

  4. [转载]获取当前日期和农历的js代码

    原文地址: http://www.cnblogs.com/Gnepner/archive/2011/09/07/2169822.html 获取当前日期时间: function GetCurrentDa ...

  5. [转载]js javascript 判断字符串是否包含某字符串,String对象中查找子字符,indexOf

    var Cts = "bblText"; if(Cts.indexOf("Text") > 0 ) { alert('Cts中包含Text字符串'); }

  6. python time相关操作

    1.获取当前时间的两种方法: 代码如下: import datetime,timenow = time.strftime("%Y-%m-%d %H:%M:%S")print now ...

  7. 用CImage类来显示PNG、JPG等图片

    系统环境:Windows 7软件环境:Visual Studio 2008 SP1本次目的:实现VC单文档.对话框程序显示图片效果 CImage 是VC.NET中定义的一种MFC/ATL共享类,也是A ...

  8. Debugging with GDB 用GDB调试多线程程序

    Debugging with GDB http://www.delorie.com/gnu/docs/gdb/gdb_25.html GDB调试多线程程序总结 一直对GDB多线程调试接触不多,最近因为 ...

  9. HDU4602+推导公式

    手动列出前5项 可发现规律 /* 推导公式 a[n] = 2^(n-1) + (n-2)*2^(n-3) */ #include<stdio.h> #include<math.h&g ...

  10. 在linux下,查看一个运行中的程序, 占用了多少内存

    1. 在linux下,查看一个运行中的程序, 占用了多少内存, 一般的命令有 (1). ps aux: 其中  VSZ(或VSS)列 表示,程序占用了多少虚拟内存. RSS列 表示, 程序占用了多少物 ...