题目:

n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击。《不同行,不同列,不同对角线》

给定一个整数n,返回所有不同的n皇后问题的解决方案。

每个解决方案包含一个明确的n皇后放置布局,其中“Q”和“.”分别表示一个女王和一个空位置。

样例

对于4皇后问题存在两种解决的方案:

[

[".Q..", // Solution 1

"...Q",

"Q...",

"..Q."],

["..Q.", // Solution 2

"Q...",

"...Q",

".Q.."]

]

挑战

你能否不使用递归完成?

解题:

题意:在n*n的棋盘上,保证n个皇后,不同行,不同列,不同对角线,这样的组合方式有多少种,并求出所以的组合方式。

在网上看到下面的思路:

在n*n的矩阵中,n个皇后分别在0-n-1行,也就是说,第i个皇后在第i行是固定的,但是在第多少列?用到回溯法进行解决。

对第i个皇后,依次考虑0 - n-1列的位置是否合法,若在第k列的位置合法,则再考虑下一个皇后的位置。

当i==n的时候并且起位置合法,则保存路径上的各个皇后位置。

如何判断其位置是合法的?

1.暴力,定义矩阵,对新来的点看是否有和它在相同的行,列,对角线

2.定义一个保存所在列的矩阵colVals,其下标就是所在的行,colVals[i]的值就是所在的列值。

显然 不会相同了,只需再考虑列,对角线<正对角线,负对角线>

列值相同:colVals[i] = colVals[row]  ->也就是在相同的列

对角线的时候,可以发现这样的规律:|row - i| = |colVals[row] - colVals[i]| 这里要考虑绝对值,有两种情况的。

其他情况都是合法的。

参考链接
Java程序:

class Solution {
/**
* Get all distinct N-Queen solutions
* @param n: The number of queens
* @return: All distinct solutions
* For example, A string '...Q' shows a queen on forth position
*/
ArrayList<ArrayList<String>> solveNQueens(int n) {
// write your code here
ArrayList<String> path = new ArrayList<String>();
ArrayList<ArrayList<String>> result = new ArrayList<ArrayList<String>>();
if( n<0 )
return result;
int cols[] = new int[n];
DFS_helper(n,result,0,cols);
return result; }
public void DFS_helper(int nQueens,ArrayList<ArrayList<String>> result,int row,int[] cols){
if(row == nQueens ){
ArrayList<String> path = new ArrayList<String>();
for(int i = 0;i<nQueens ;i++){
String s = "";
for(int j = 0;j< nQueens ;j++){
if(j == cols[i])
s = s + "Q";
else
s = s + ".";
}
path.add(s); }
result.add(path);
}else{
for(int i = 0;i<nQueens ;i++){
cols[row] = i;
if(isValid(row,cols))
DFS_helper(nQueens,result,row + 1 ,cols);
}
}
}
public boolean isValid(int row ,int[] cols){
for(int i=0;i<row;i++){
if(cols[row] == cols[i] || Math.abs(cols[row] - cols[i]) == row - i)
return false;
}
return true;
}
};

总耗时: 1397 ms

"这类型问题统称为递归回溯问题,也可以叫做对决策树的深度优先搜索(dfs)"

竟然也叫深度优先搜索。。。

Python程序:

lintcode 中等题:N Queens N皇后问题的更多相关文章

  1. lintcode 中等题:N Queens II N皇后问题 II

    题目: N皇后问题 II 根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局. 样例 比如n=4,存在2种解决方案 解题: 和上一题差不多,这里只是求数量,这个题目定义全局变量,递 ...

  2. lintcode 中等题:partition array 数组划分

    题目 数组划分 给出一个整数数组nums和一个整数k.划分数组(即移动数组nums中的元素),使得: 所有小于k的元素移到左边 所有大于等于k的元素移到右边 返回数组划分的位置,即数组中第一个位置i, ...

  3. lintcode 中等题:permutations II 重复数据的全排列

    题目 带重复元素的排列 给出一个具有重复数字的列表,找出列表所有不同的排列. 样例 给出列表 [1,2,2],不同的排列有: [ [1,2,2], [2,1,2], [2,2,1] ] 挑战 使用递归 ...

  4. lintcode 中等题:permutations 全排列

    题目 全排列 给定一个数字列表,返回其所有可能的排列. 您在真实的面试中是否遇到过这个题? Yes 样例 给出一个列表[1,2,3],其全排列为: [ [1,2,3], [1,3,2], [2,1,3 ...

  5. lintcode 中等题: Implement Trie

    题目 Implement Trie Implement a trie with insert, search, and startsWith methods. 样例   注意 You may assu ...

  6. lintcode 中等题:majority number III主元素III

    题目 主元素 III 给定一个整型数组,找到主元素,它在数组中的出现次数严格大于数组元素个数的1/k. 样例 ,返回 3 注意 数组中只有唯一的主元素 挑战 要求时间复杂度为O(n),空间复杂度为O( ...

  7. lintcode 中等题:A + B Problem A + B 问题

    题目: 中等 A + B 问题 给出两个整数a和b, 求他们的和, 但不能使用 + 等数学运算符. 如果 a=1 并且 b=2,返回3 注意 你不需要从输入流读入数据,只需要根据aplusb的两个参数 ...

  8. lintcode 中等题:搜索旋转排序数组II

    题目 搜索旋转排序数组 II 跟进“搜索旋转排序数组”,假如有重复元素又将如何? 是否会影响运行时间复杂度? 如何影响? 为何会影响? 写出一个函数判断给定的目标值是否出现在数组中. 样例 给出[3, ...

  9. lintcode 中等题: reverse linked list II 翻转链表II

    题目 翻转链表 II 翻转链表中第m个节点到第n个节点的部分 样例 给出链表1->2->3->4->5->null, m = 2 和n = 4,返回1->4-> ...

随机推荐

  1. BootStrap简介及应用要点

    BootStrap简介 BootStrap是基于HTML.CSS和JavaScript的框架,使你只需要写简单的代码就可以很快的搭建一个还不错的前端框架,他是后端程序员的福音,使他们只需要专注业务逻辑 ...

  2. CSS3实现半像素边框

    一.思路 普通的1px黑色实线边框: border: 1px solid #000; 半像素边框当然不是简单地把1px改为0.5px(没测试过,可能会被解析成1或者0),border-width的值只 ...

  3. 【Qt】Qt之自定义界面(右下角冒泡)【转】

    简述 网页右下角上经常会出现一些提示性的信息,桌面软件中也比较常见,类似360新闻.QQ消息提示一样! 这种功能用动画实现起来很简单,这节我们暂时使用定时器来实现,后面章节会对动画框架进行详细讲解. ...

  4. 【Sql Server】使用触发器把一个表中满足条件的数据部分字段插入到另一个表中

    create trigger 触发器名称 on 对哪个表起作用 after insert,update as return set nocount on begin transaction; inse ...

  5. Jexus 高并发请求的优化技巧 笔记

    Jexus web server 5.1 每个工作进程的最大并发数固定为1万,最多可以同时开启4个工作进程,因此,每台Jexus V5.1服务器最多可以到支持4万个并发连接.但是,按照linux系统的 ...

  6. Scrapy源码学习(二)

    上次说到scrapy_home/scrapy/commands包下每个模块对应了scrapy命令行中的一个命令,他们都继承自command.py模块中ScrapyCommand这个类,这次就来简单看一 ...

  7. MySQL实战积累

    IFNULL(expr1,expr2)的用法:假如expr1不为NULL,则IFNULL()的返回值为   expr1; 否则其返回值为expr2. 索引:http://www.cnblogs.com ...

  8. python杂记-2(python之文件)

    文件打开函数:f = open 表1-1:open函数中模式参数常用值 打开模式 描述 'r' 读模式 'w' 写模式 'a' 追加模式 'b' 二进制模式 '+' 读/写模式 表1-2:文件对象方法 ...

  9. python操作mysql之pymysql

    pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同.但目前pymysql支持python3.x而后者不支持3.x版本. 本文测试python版本:2.7.11.mys ...

  10. linux c 验证登录密码

    #define _XOPEN_SOURCE #include <stdio.h> #include <unistd.h> int main(int argc, char *ar ...