【HDOJ】4089 Activation
1. 题目描述
长度为n的等待队列,tomato处于第m个,有如下四种可能:
(1)激活失败,概率为$p_1$,队列中的顺序不变;
(2)连接失败,概率为$p_2$,队头玩家重新排在队尾;
(3)激活成功,概率为$p_3$,队头出队;
(4)服务器down机,概率为$p_4$,队伍停止。
问当服务器当机时,tomato处在队列前k个人的概率是多少?
2. 基本思路
这显然是个概率DP。dp[i][j]表示队伍中有i个人,tomato处在第j个满足所求的概率。
\begin{align}
j=1, (1-p_1) \times dp[i][j] &= p_2 \times dp[i][i] + p_4 \\
j\in [2,k], (1-p_1) \times dp[i][j] &= p_2 \times dp[i][j-1] + p_3 \times dp[i-1][j-1] + p_4 \\
j>k, (1-p_1) \times dp[i][j] &= p_2 \times dp[i][j-1] + p_3 \times dp[i-1][j-1]
\end{align}
显然,对于$\forall i$均存在i个等式,组成方程组。可以通过(1)式代入,解出dp[i][i]。
注意$p_4 \rightarrow 0$时,即不会发生down机的情况。概率为0。
3. 代码
/* 4089 */
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <bitset>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const double eps = 1e-;
const int maxn = ;
double dp[maxn][maxn];
double P[maxn];
int n, kth, k;
double p1, p2, p3, p4; void solve() {
if (p4 < eps) {
puts("0.00000");
return ;
} dp[][] = p4 / (-p1-p2);
double p21 = p2 / (-p1);
double p31 = p3 / (-p1);
double p41 = p4 / (-p1);
rep(i, , n+) {
double coef = 0.0, cons = 0.0; rep(j, , i+) {
if (j == ) {
coef = p21;
cons = p41;
} else if (j <= k) {
cons = p41 + p31 * dp[i-][j-] + p21 * cons;
coef = p21 * coef;
} else {
cons = p31 * dp[i-][j-] + p21 * cons;
coef = p21 * coef;
}
} dp[i][i] = cons / (1.0 - coef);
rep(j, , i) {
if (j == ) {
dp[i][j] = p21 * dp[i][i] + p41;
} else if (j <= k) {
dp[i][j] = p21 * dp[i][j-] + p31 * dp[i-][j-] + p41;
} else {
dp[i][j] = p21 * dp[i][j-] + p31 * dp[i-][j-];
}
}
} double ans = dp[n][kth];
printf("%.05lf\n", ans);
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif while (cin >> n >> kth >> k >> p1 >> p2 >> p3 >> p4) {
solve();
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}
【HDOJ】4089 Activation的更多相关文章
- 【HDU】4089 Activation
http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人排队等着在官网上激活游戏.主角排在第m个. 对于队列中的第一个人.有以下情况:1.激活失败 ...
- 【HDOJ】【4089】Activation
概率DP kuangbin总结中的第5题 题解copy: HDU 4098 题意:有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有一下情况: 1.激活失败,留在队列 ...
- 【HDOJ】4729 An Easy Problem for Elfness
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...
- 【HDOJ】【3506】Monkey Party
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...
- 【HDOJ】【3516】Tree Construction
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...
- 【HDOJ】【3480】Division
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...
- 【HDOJ】【2829】Lawrence
DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...
- 【HDOJ】【3415】Max Sum of Max-K-sub-sequence
DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...
- 【HDOJ】【3530】Subsequence
DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...
随机推荐
- WinForms 小型HTML服务器
最近教学,使用到了Apache和IIS,闲着无聊,有种想自己写个小服务器的冲动. 在网上找了半天的资料,最后终于搞定了,测试可以访问.效果图如下: 因为只是处理简单的请求,然后返回请求的页面,所以没有 ...
- JS禁用和启用鼠标滚轮滚动事件
// left: 37, up: 38, right: 39, down: 40, // spacebar: 32, pageup: 33, pagedown: 34, end: 35, home: ...
- uniquery 配合 mssql 自带存储过程实现分页
--使用系统存储过程实现的通用分页存储过程 -- 此过程原作者,应该是:邹健老前辈 CREATE PROC sp_PageView @sql ntext, --要执行的sql语句 , --要显示的页码 ...
- Spark小课堂Week5 Scala初探
Spark小课堂Week5 Scala初探 Scala是java威力加强版. 对Java的改进 这里会结合StreamingContext.scala这个代码说明下对Java的改进方面. 方便测试方式 ...
- Python垃圾回收机制详解
一.垃圾回收机制 Python中的垃圾回收是以引用计数为主,分代收集为辅.引用计数的缺陷是循环引用的问题. 在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存. #e ...
- Oracle监听器—静态注册
注册就是将数据库作为一个服务注册到监听程序.客户端不需要知道数据库名和实例名,只需要知道该数据库对外提供的服务名就可以申请连接到数据库.这个服务名可能与实例名一样,也有可能不一样. 注册分: 1. 静 ...
- EXTJS 4.2 资料 控件之btn设置可否点击
1.下面是一个btn按钮的代码,默认不可以点击 { id: 'skipStep3', disabled: true,//默认不可点击 text: "跳转第三步", handler: ...
- EF4.1之覆盖EF的默认的约定
覆盖EF默认的约定可以通过两种方式: 1.拦截模型构建器,使用流畅的API 2.通过给 类添加标签 好的,我还用之前定义的订单类来做例子: public class Order { public in ...
- ios实现截屏(转)
-(UIImage*) makeImage { UIGraphicsBeginImageContext(self.view.bounds.size); [self.view.layer rende ...
- POJ - 1741 Tree
DescriptionGive a tree with n vertices,each edge has a length(positive integer less than 1001).Defin ...