透视

今天抽一点时间来看看透视和逆透视语句,简单的说就是行列转换。假设一个销售表中存放着产品号,产品折扣,产品价格三个列,每一种产品号可能有多种折扣,每一种折扣只对应一个产品价格。下面贴出建表语句和插入数据语句。

 
1 create table SalesOrderDetail(
2 ProductID int /*unique多谢wuu00的提醒*/,
3 UnitPriceDiscount float,
4 ProductPrice float
5 )
6  insert into SalesOrderDetail values
7 (711,.00,12),
8 (711,.00,13),
9 (711,.02,17),
10 (711,.02,16),
11 (711,.05,19),
12 (711,.05,20),
13 (711,.10,21),
14 (711,.10,22),
15 (711,.15,23),
16 (711,.15,24),
17 (747,.00,41),
18 (747,.00,42),
19 (747,.02,45),
20 (747,.02,46),
21 (776,.20,50),
22 (776,.20,49),
23 (776,.35,52),
24 (776,.35,53)
 

首先来看一条查询语句

1 select ProductID,UnitPriceDiscount,SUM(ProductPrice) as SumPrice
2  from SalesOrderDetail
3  group by ProductID,UnitPriceDiscount
4 order by ProductID,UnitPriceDiscount

这条语句查询每一种产品针对每一种折扣的价钱总和,查询结果如下图1

图1

  

从图中我们可以看出771号产品有4种折扣,747号产品有2种折扣,776号产品有2种折扣。现在如果我们想知道每一种产品折扣,每一种产品的销售总价是多少,如下图2

图2

  

如图对于折扣0,产品711的总价是25,对以折扣0.02,产品711的总价是33等等不再列举。原来的行是产品号,现在产品号变成了列,原来的折扣变成了现在的第一列。这就是数据透视的效果。下面我们开看看是这个效果是如何用语句实现的。

 
1 select * from
2 (select sod.ProductPrice,sod.ProductID,sod.UnitPriceDiscount from SalesOrderDetail sod) so
3 pivot
4 (
5 sum(so.ProductPrice) for so.ProductID in([711],[747],[776])
6 ) as pt
7 order by UnitPriceDiscount
 

  

首选创建子查询(select sod.ProductPrice,sod.ProductID,sod.UnitPriceDiscount from SalesOrderDetail sod) so ,透视运算符要使用这个子查询中的数据进行聚合运算,此外输出显示也要用到子查询中的列。代码生成一个别名为so的表值表达式。在这个表中使用pivot在特定的列上进行聚合,这里是对so.ProductPrice进行聚合,聚合针对so.ProductID进行。在这个例子中对三种产品的中的每一种创建一个列。这个相当于group by,从so表达式中进行数据筛选。不过这里没有选出ProductPrice,仅仅生成每行三个列,每一种产品为一个列的结果集。因此带有povit的表值表达式生成一个临时的结果集,将这个结果集命名为pt,使用这个结果集生成我们需要的输出。如果想要得到一个更加合适的列名可以修改筛选条件。如下:

 
1 select pt.UnitPriceDiscount,[711] as Product711,[747] as Product747,[776] as Product747 from
2 (select sod.ProductPrice,sod.ProductID,sod.UnitPriceDiscount from SalesOrderDetail sod) so
3 pivot
4 (
5 sum(so.ProductPrice) for so.ProductID in([711],[747],[776])
6 ) as pt
7 order by UnitPriceDiscount
 

  

输出的结果如下图3

图3

  

逆透视

这次我们首先看语句和查询结果再分析,语句如下:

1 select ProductID,UnitPriceDiscount,ProductPrice
2 from
3 (select UnitPriceDiscount,Product711,Product747,Product776 from #Temp1) as up1
4 unpivot(ProductPrice for ProductID in(Product711,Product747,Product776)) as up2
5 order by ProductID

查询结果如下图4:

图4

首先我们来看看逆透视得到了一个什么样的结果。对于每一种产品的每一种折扣查询得到他们的合计售价,这个和上面图1中的结果是一样的,是的,它和透视之前的结果是相同的。逆透视和透视并不是完全相反。Pivot会执行聚合,把可能存在的多个行合并输出得到一行。由于已经进行了合并,unpivot无法重新生成原始的表值表达式,unpivot输入中的null值将在输出中消失,尽管在pivot操作之前输入中可能存在原始的null值。如图5是他们的比较。在图中我们可以看到NULL值下面一个图中没有NULL值,刚好有9行。下图把他们放在一起比较。

图5

下面我们来剖析一下上面的语句到底做了些什么。首先是一个表值函数(select UnitPriceDiscount,Product711,Product747,Product776 from #Temp1) as up1,这个表值函数从透视结果,也就是临时表中,然后针对每一个产品号进行逆透视:unpivot(ProductPrice for ProductID in(Product711,Product747,Product776)) as up2,然后从逆透视结果中选择ProductID ,ProductPrice,从表值函数中选择UnitPriceDiscount。

延伸阅读

一个例子还不足以让我们理解这个语句,下面来看看TechNet中的例子。

SELECT DaysToManufacture, AVG(StandardCost) AS AverageCost FROM Production.Product

GROUP BY DaysToManufacture;

这个语句查出Product表中的制造时间和平均成本,得到如下的结果

图6

如图可以看到没有制造时间为3天的产品,这里留下一个伏笔,在透视之后会出现一个NULL值。下面使用透视语句对它进行行列转换,就是使用0,1,2,3来作为列,使用具体的制造成本作为行数据。语句如下

 
1 select
2 'AverageCost' as Cost_Sorted_By_Production_Days,
3 [0],[1],[3],[4]
4 from
5 (select DaysToManufacture,StandardCost from Production.Product) as SourceTable
6 pivot
7 (avg(StandardCost) for DaysToManufacture in ([0],[1],[3],[4])) as PivotTable
 

依旧,首先用一个表值表达式把要透视的列和透视的项选择出来,然后使用透视语句针对每一个项计算平均成本,最后从这个透视结果中选择出结果。
结果如下图7,我们可以看到制造时间为3天的产品没有一个对应的平均成本。

图7

下面这个例子稍微复杂一点。

1 SELECT VendorID,count(PurchaseOrderID) as PurchaseCunt
2 FROM Purchasing.PurchaseOrderHeader group by VendorID

这条语句查询得到每个供应商和他对应的交易号的个数,也就是每个供应商成交的交易次数。如图8列举出部分结果

图8

从图中我们可以看到供应商1共成交51比交易,供应商2共成交51笔交易。如果我们想查出这些交易分别是和那些雇员成交的应该怎么写呢?首先我们来看看表中全部的雇员情况。

select distinct(EmployeeID) from Purchasing.PurchaseOrderHeader

查询结果如图9

图9

如上图我们可以看到共有12个雇员有成交记录。对于这些雇员,如下查询语句

 
1 SELECT
2 VendorID,
3 [164] AS Emp164,
4 [198] AS Emp198,
5 [223] AS Emp223,
6 [231] AS Emp231,
7 [233] AS Emp233,
8 [238] as Emp238,
9 [241] as Emp241,
10 [244] as Emp244,
11 [261] as Emp261,
12 [264] as Emp264,
13 [266] as Emp266,
14 [274] as Emp274
15 FROM
16 (SELECT PurchaseOrderID,EmployeeID,VendorID
17 FROM Purchasing.PurchaseOrderHeader) p
18 PIVOT
19 (
20 COUNT (PurchaseOrderID)
21 FOR EmployeeID IN
22 ( [164], [198], [223], [231],[233],[238],[241],[244],[261],[264],[266],[274])
23 ) AS pvt
24 ORDER BY pvt.VendorID;
 

查询结果如下图10

图10

可以 简单地计算一下1+4+3+5+4+4+4+5+5+4+5+6+2刚好等于51,分开来看就是1号供应商分别和164号雇员成交4比记录,和198号雇员成交3比记录等等。

来源:http://www.cnblogs.com/tylerdonet/archive/2011/07/07/2100313.html

T-SQL中的透视和逆透视的更多相关文章

  1. SQL点滴19—T-SQL中的透视和逆透视

    原文:SQL点滴19-T-SQL中的透视和逆透视 透视 今天抽一点时间来看看透视和逆透视语句,简单的说就是行列转换.假设一个销售表中存放着产品号,产品折扣,产品价格三个列,每一种产品号可能有多种折扣, ...

  2. SQL SERVER技术内幕之7 透视与逆透视

    1.透视转换 透视数据(pivoting)是一种把数据从行的状态旋转为列的状态的处理,在这个过程中可能须要对值进行聚合. 每个透视转换将涉及三个逻辑处理阶段,每个阶段都有相关的元素:分组阶段处理相关的 ...

  3. T-SQL——数据透视和逆透视

    目录 0. 测试数据集及说明 0.1 准备测试数据 0.2 对一维表和二维表理解 1. 透视转换 1.1 使用标准SQL进行数据透视 1.2 使用T-SQL中pivot函数进行数据透视 1.3 关于 ...

  4. T-SQL基础(7) - 透视,逆透视和分组集

    透视转换: use tempdb;if object_id('dbo.Orders', 'U') is not null drop table dbo.Orders;create table dbo. ...

  5. 《BI那点儿事》数据流转换——逆透视转换

    逆透视转换将来自单个记录中多个列的值扩展为单个列中具有同样值的多个记录,使得非规范的数据集成为较规范的版本.例如,每个客户在列出客户名的数据集中各占一行,在该行的各列中显示购买的产品和数量.逆透视转换 ...

  6. SQL Server进阶(八)查询——开窗函数、四大排名函数、透视数据、逆透视数据

    概述 ROW_NUMBER() OVER(PARTITION BY CustId ORDER BY ID DESC) https://www.jb51.net/article/75533.htm 开窗 ...

  7. PIVOT(透视转换)和UNPIVOT(逆透视转换)

    一.原数据状态 二.手动写透视转换1 三.手动写透视转换2 四.PIVOT(透视转换)和UNPIVOT(逆透视转换)详细使用 使用标准SQL进行透视转换和逆视转换 --行列转换 create tabl ...

  8. UNPIVOT逆透视以及动态逆透视存储过程

    前几天一直练习PIVOT透视,还实现了动态透视的存过程<动态透视表>https://www.cnblogs.com/insus/p/10888277.html 今天练习MS SQL Ser ...

  9. JQuery选择器大全 前端面试送命题:面试题篇 对IOC和DI的通俗理解 c#中关于协变性和逆变性(又叫抗变)帮助理解

    JQuery选择器大全   jQuery 的选择器可谓之强大无比,这里简单地总结一下常用的元素查找方法 $("#myELement")    选择id值等于myElement的元素 ...

随机推荐

  1. eclipse环境NDK问题汇总

    1. 配置NDK路径设置 可以在cygwin中通过vim修改,也可以在windows安装目录中修改 home\<你的用户名>\.bash_profile 文件中最后添加环境变量 NDK=/ ...

  2. xamarin for vs2013

    安装需求(下载的包及版本) 先安装VS2013 然后到官网下Xamarin,运行后会自动下载以下文件 这是下载的详细列表 jdk-6u39-windows-i586.exe(69.73M) Andro ...

  3. Ext.MessageBox的用法

    1.Ext.MessageBox.alert()方法 有四个参数:alert( title , msg , function(){} ,this) 其中title,msg为必选参数,function为 ...

  4. [原]RobotFrameWork(二)Ride简单使用及快捷键

    一.简单示例 注意:以下操作使用到快捷键的,请先确保没有与其他软件的快捷键设置冲突,比如sogou拼音.有道词典等等 1.启动ride 启动ride方法: 1)  通过界面图标 2)  dos命令行: ...

  5. Ubuntu安装secureCRT

    在使用secureCRT前确保主机的ssh服务是启动状态. 一.下载secureCRT包 site:  https://www.vandyke.com/download/securecrt/downl ...

  6. PAT 1026. Table Tennis

    A table tennis club has N tables available to the public.  The tables are numbered from 1 to N.  For ...

  7. iOS开发总结-UITableView 自定义cell和动态计算cell的高度

    UITableView cell自定义头文件:shopCell.h#import <UIKit/UIKit.h>@interface shopCell : UITableViewCell@ ...

  8. ABAP SAPGUI_PROGRESS_INDICATOR 显示数据处理进度

    ABAP处理的数据量较大时,盯着一动不动的选择屏幕是不是很无聊?? LOOP AT I_TAB. DESCRIBE TABLE I_TAB[] LINES L_LIN. L_PERC = SY-TAB ...

  9. Java SE Eclipse中引入第三方jar及class

    使用eclipse开发Java SE 总免不了需要引入第三方的jar或者calss文件.这里给大家说一下如何在eclipse中引入第三方jar或者calss文件. 让我们先了解一下eclipse项目中 ...

  10. Eclipse Key Shortcuts for Greater Developers Productivity--reference

    Posted by Ajitesh Kumar / In Java / June 6, 2014 http://vitalflux.com/eclipse-key-shortcuts-greater- ...