Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are
summed and the process is repeated. This is continued as long as necessary to obtain a single digit.



For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
Output
For each integer in the input, output its digital root on a separate line of the output.
Sample Input
24
39
0
Sample Output
6
3
一个数对九取余,得到的数称之为九余数;
一个数的九余数等于它的各个数位上的数之和的九余数!

题目大意:

给定一个正整数,根据一定的规则求出该数的“数根”,其规则如下:

例如给定 数字 24,将24的各个位上的数字“分离”,分别得到数字 2 和 4,而2+4=6;

因为 6 < 10,所以就认为6是数字24的“数根”;

而对于数字 39 , 将39的各个位上的数字“分离”,分别得到数字 3 和 9,而3+9=12,且12>10;

所以依据规则再对 12 进行相应的运算,最后得到数字3,而3<10,所以就认为3是数字39的“数根”。

通过运算可以发现任何一个数的“数根”都是一个取值范围在 1 ~ 9之间的正整数,

且任何一个正整数都只有唯一的一个“数根”与其相对应。

题目要求数字 n^n 的“数根”

解题思路:

九余数定理

一个数对九取余后的结果称为九余数。

一个数的各位数字之和想加后得到的<10的数字称为这个数的九余数(如果相加结果大于9,则继续各位相加)

代码如下:
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
int main()
{
char a[1010];
int i,j,s,l;
while(~scanf("%s",&a)&&a[0]!='0')
{
l=strlen(a);
s=0;
for(i=0;i<l;i++)
{
s=s+a[i]-'0';
}
s=s%9;
if(s==0)
s=9;
printf("%d\n",s);
}
return 0;
}

一个数对九取余,得到的数称之为九余数;
一个数的九余数等于它的各个数位上的数之和的九余数!

HDOJ 1013题Digital Roots 大数,9余数定理的更多相关文章

  1. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  2. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. HDU-1163 Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  4. HDU——1163Eddy's digital Roots(九余数定理+同余定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  5. hdu 1163 Eddy's digital Roots 【九余数定理】

    http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...

  6. 1013:Digital Roots

    注意:大数要用字符串表示! sprintf:字符串格式化命令 主要功能:将格式化的数据写入某个字符串缓冲区 头文件:<stdio.h> 原型 int sprintf( char *buff ...

  7. HDU 1013 Digital Roots(字符串,大数,九余数定理)

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. HDU 1013 Digital Roots【字符串,水】

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. HDU 1013 Digital Roots(to_string的具体运用)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1013 Digital Roots Time Limit: 2000/1000 MS (Java/Othe ...

随机推荐

  1. css-a:visited

    如下代码: <a href="#">链接地址</a> 如果属性 href的设置为'#',则鼠标滑过(即使没有点击',也算成'visited'.而对于 hre ...

  2. oracle set命令

    SQL>set colsep' ';     //-域输出分隔符SQL>set echo off;     //显示start启动的脚本中的每个sql命令,缺省为onSQL> set ...

  3. jQuery无刷新上传学习心得

    记得刚离开大学,进入目前这家公司不到一个月时,有一位前辈给我们当时的新人讲了下JS无刷新上传的相关知识. 在此之前,一直都是在使用C#提供的服务器上传控件FileUpload,但是每次使用时,都会刷新 ...

  4. DOM&SAX解析XML

    在上一篇随笔中分析了xml以及它的两种验证方式.我们有了xml,但是里面的内容要怎么才能得到呢?如果得不到的话,那么还是没用的,解析xml的方式主要有DOM跟SAX,其中DOM是W3C官方的解析方式, ...

  5. root 密码丢失后的重新设置

    /usr/local/mysql/bin/mysqld_safe --skip-grant-tables & mysql> use mysql; mysql> update use ...

  6. 安装sql server 2008,提示要删除SQL Server 2005 Express 工具 怎么解决?

    x86 修改注册表:HKLM\Software\Microsoft\Microsoft SQL Server\90\Tools\ShellSEM,把 ShellSEM重命名即可. x64       ...

  7. PHP文件上传与安全

    文件上传的流程 上传必须由POST方式的file类型表单提交,被提交的地方 一定是一个php程序,用户在表单使用file类型的域.选在一个自己电脑上的文件,提交到php程序以后 其实就已经完成了一个上 ...

  8. 关于python decode()和 encode()

    1.先收集一下这几天看到的关于decode()解码和encode()编码的用法 bytes和str是字节包和字符串,python3中会区分bytes和str,不会混用这两个.字符串可以编码成字节包,而 ...

  9. Python 手册——参数传递以及交互模式

    我们先来看参数传递. 调用解释器时,脚本名和附加参数之传入一个名为sys.argv的字符串列表.没有脚本和参数时,它至少也有一个 元素:sys.argv[0]此时为空字符串.脚本名指定为‘ - ’(表 ...

  10. ASP.NET MVC轻教程 Step By Step 7——改进Write动作方法

    在上一节我们使用强类型视图改进Write视图获得更好的智能感知和代码重构,现在可以进一步的改进动作方法. Step 1. 数据模型绑定 在Save方法中我们使用Request来获取表单传送的值,其实可 ...