Problem Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately
encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives,
have very little entropy and do not benefit from further attempts at entropy encoding.



English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in
english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s
easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This
seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.



In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix
of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would
be impossible.



Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would
be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain
a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that
the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is,
each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text
even though the codes have varying bit lengths.



As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’
and “N” only occur once, however, so they will have the longest codes.



There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with
“100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a
compression ratio of 2.8 to 1.
 
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the
word “END” as the text string. This line should not be processed.
 
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
 
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
 
Sample Output
64 13 4.9
144 51 2.8
 
Source
 

思路:此题不须要编码,仅仅须要求编码的长度而已,直接乱搞。

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; int num[27];
char s[100005]; struct S{
int val; S(int a){val=a;} bool operator<(const S &p) const
{
return val>p.val;
} }; int main()
{
int n,i,len,ans,a,b,cnt; while(~scanf("%s",s))
{
len=strlen(s); if(len==3 && s[0]=='E' && s[1]=='N' && s[2]=='D') return 0; memset(num,0,sizeof num); for(i=0;i<len;i++)
{
if(s[i]!='_') num[s[i]-'A']++;
else num[26]++;
} sort(num,num+27); priority_queue<S>que; cnt=0; for(i=0;i<27;i++) if(num[i])
{
que.push(num[i]); cnt++;
} if(cnt==1)//特判
{
printf("%d %d %.1f\n",len*8,len,8.0); continue;
} ans=0; while(que.size()>1)
{
a=que.top().val;
que.pop();
b=que.top().val;
que.pop(); ans+=a+b; que.push(a+b);
} printf("%d %d %.1f\n",len*8,ans,(double)len*8/ans);
}
}

HDU-1053-Entropy(Huffman编码)的更多相关文章

  1. HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others)   ...

  2. hdu 1053 Entropy

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Description An entropy encoder is a data ...

  3. uvalive 2088 - Entropy(huffman编码)

    题目连接:2088 - Entropy 题目大意:给出一个字符串, 包括A~Z和_, 现在要根据字符出现的频率为他们进行编码,要求编码后字节最小, 然后输出字符均为8字节表示时的总字节数, 以及最小的 ...

  4. hdu 1053 Entropy (哈夫曼树)

    Entropy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. [老文章搬家] 关于 Huffman 编码

    按:去年接手一个项目,涉及到一个一个叫做Mxpeg的非主流视频编码格式,编解码器是厂商以源代码形式提供的,但是可能代码写的不算健壮,以至于我们tcp直连设备很正常,但是经过一个UDP数据分发服务器之后 ...

  6. Huffman编码

    #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <cstdio> #include <cstri ...

  7. 【数据压缩】Huffman编码

    1. 压缩编码概述 数据压缩在日常生活极为常见,平常所用到jpg.mp3均采用数据压缩(采用Huffman编码)以减少占用空间.编码\(C\)是指从字符空间\(A\)到码字表\(X\)的映射.数据压缩 ...

  8. 优先队列求解Huffman编码 c++

    优先队列小析      优先队列的模板: template <class T, class Container = vector<T>,class Compare = less< ...

  9. Huffman编码实现电文的转码与译码

    //first thing:thanks to my teacher---chenrong      Dalian Maritime university /* 构造Huffman Tree思路: ( ...

  10. 【HDOJ】1053 Entropy

    构造huffman编码,果断对字符进行状态压缩. #include <iostream> #include <cstdio> #include <cstring> ...

随机推荐

  1. 验证视图状态MAC失败解决方案

    验证视图状态 mac 失败.如果此应用程序由网络场或群集承载 请确保 machinekey 配置指定了相同的 validationkey 和验证算法.不能在群集中使用 autogenerate. 总是 ...

  2. Python自动化运维之24、JQuery

    jQuery是一个兼容多浏览器的javascript库,核心理念是write less,do more(写得更少,做得更多).它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器(IE 6.0+, ...

  3. python【第二篇】列表、元组、字典及文件操作

    本节内容 列表 元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1.列表 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作:列表有序.可变.元素 ...

  4. java项目导出jar文件时指定main方法的类

    需要先运行一下main函数,eclipse的Export-->Runnable JAR File ---> 下的Launch configuration下拉列表才会有记录.如果想要删除下拉 ...

  5. AST抽象语法树

    抽象语法树简介 (一)简介 抽象语法树(abstract syntax code,AST)是源代码的抽象语法结构的树状表示,树上的每个节点都表示源代码中的一种结构,这所以说是抽象的,是因为抽象语法树并 ...

  6. BZOJ 3106 棋盘游戏

    Description 一个\(n \times n(n \le 2)\)棋盘上有黑白棋子各一枚.游戏者A和B轮流移动棋子,A先走. A的移动规则:只能移动白棋子.可以往上下左右四个方向之一移动一格. ...

  7. BZOJ 1031 字符加密

    Description 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法.例如下图,可以读作 ...

  8. The Child and Sequence

    Codeforces Round #250 (Div. 1)D:http://codeforces.com/problemset/problem/438/D 题意:给你一个序列,然后有3种操作 1x ...

  9. 轮值CEO胡厚崑:到2025年所有的企业都将用到云(云的2.0时代,会有几千朵云几万朵云升起来,这将产生不同的技术模式、商业模式、思维模式)

    2016年09月04日 07:38 中国经营报   李凡 在全国工商联“2016年中国民营企业500强”排行榜上夺得头把交椅的华为,向外界描绘了面向未来进一步做大做强的路径. 华为创始人任正非于201 ...

  10. Delphi 的各种错误信息(中英文)

    ******************************* * 编 译 错 误 信 息 * ******************************* ';' not allowed befo ...