欧拉定理。根据分数转换成2进制的过程,分子每次都乘2。对于循环节x,当2^x = 1(mod b)时肯定是循环节。显然当分母不能整除2的时候,即分母和2互质的话,就可以利用欧拉定理,使得2^(Euler(b)) = 1(mod b)。然后对于Euler(b),枚举其因子,找到最小循环节就可以了。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<set>
#include<map>
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a))
#define REP(i, n) for(int i = 0; i < n; i ++)
using namespace std;
const int N = 400100;
bool isp[N];
vector<int> p;
vector<LL> hav; void get_P()
{
CLR(isp, true);p.clear();
for(int i = 2; i < N; i ++)
{
if(isp[i])
{
p.push_back(i);
if(i < 1111) for(int j = i * i; j < N; j += i)
{
isp[j] = false;
}
}
}
} LL Euler_phi(LL n)
{
LL ret = n;
for(int i = 0; (LL)p[i] * p[i] <= n; i ++) if(n % (LL)p[i] == 0)
{
ret = ret / p[i] * (p[i] - 1);
while(n % p[i] == 0) n /= p[i];
}
if(n > 1) ret = ret / n * (n - 1);
return ret;
} LL Mul(LL a, LL b, LL mod)
{
LL ret = 0;
while(b)
{
if(b & 1)
ret = (ret + a) % mod;
a = a * 2 % mod;
b >>= 1;
}
return ret;
} LL Pow(LL a, LL b, LL mod)
{
LL ret = 1;
while(b)
{
if(b & 1) ret = Mul(ret, a, mod);
a = Mul(a, a, mod);
b >>= 1;
}
return ret;
} LL gcd(LL a, LL b)
{
return b ? gcd(b, a % b) : a;
} void get_hav(LL n)
{
hav.clear();
for(int i = 0; i < p.size() && n > 1; i ++)
{
while(n % (LL)p[i] == 0)
{
n /= p[i];
hav.push_back(p[i]);
}
}
if(n > 1) hav.push_back(n);
} int main()
{
int cas = 1;
LL ans, m, x, a, b, g;get_P();
while(scanf("%I64d/%I64d", &a, &b) != EOF)
{
g = gcd(a, b);
a /= g;b /= g;ans = 1;
while(b % 2 == 0)
{
ans ++;
b /= 2;
a %= b;
g = gcd(a, b);
a /= g;b /= g;
}
x = Euler_phi(b);
get_hav(x);
for(int i = 0; i < hav.size(); i ++)
{
if(Pow(2LL, x / hav[i], b) == 1)
x /= hav[i];
}
printf("Case #%d: %I64d,%I64d\n", cas ++, ans, x);
}
}

poj 2462 Period of an Infinite Binary Expansion的更多相关文章

  1. poj 3358 Period of an Infinite Binary Expansion

    由乘2取整得到分数的小数位,可以找到规律!!! 例如:1/10,2/10,4/10,8/10,16/10,32/10,64/10…… 取整后:1/10,2/10,4/10,8/10,6/10,2/10 ...

  2. poj3358 Period of an Infinite Binary Expansion

    Period of an Infinite Binary Expansion 题目大意:给你一个分数,求这个分数二进制表示下从第几位开始循环,并求出最小循环节长度. 注释:int范围内. 想法:这题说 ...

  3. poj3358 Period of an Infinite Binary Expansion 数论有难度

    这道题目感觉好难,根本就是无从下手的感觉,尝试了以前的所有方法,都没有思路,毫无进展,参考了一下别人的思路,感觉学到了新的知识 接下来开始分析 观察1/10这组数据,按照二进制转化法可以得到: 1/1 ...

  4. Period of an Infinite Binary Expansion 题解

    Solution 简单写一下思考过程,比较水的数论题 第一个答案几乎已经是可以背下来的,在此不再赘述 考虑我们已经知道了\((p,q)\),其中\((p \perp q) \wedge (q \per ...

  5. KMP POJ 1961 Period

    题目传送门 /* 题意:求一个串重复出现(>1)的位置 KMP:这简直和POJ_2406没啥区别 */ /******************************************** ...

  6. POJ 1961 Period( KMP )*

    Period Time Limit: 3000MSMemory Limit: 30000K Total Submissions: 12089Accepted: 5656 Description For ...

  7. poj 1961 Period

    Period http://poj.org/problem?id=1961 Time Limit: 3000MS   Memory Limit: 30000K       Description Fo ...

  8. KMP——POJ-3461 Oulipo && POJ-2752 Seek the Name, Seek the Fame && POJ-2406 Power Strings && POJ—1961 Period

    首先先讲一下KMP算法作用: KMP就是来求在给出的一串字符(我们把它放在str字符数组里面)中求另外一个比str数组短的字符数组(我们叫它为ptr)在str中的出现位置或者是次数 这个出现的次数是可 ...

  9. POJ 1961 Period(KMP)

    http://poj.org/problem?id=1961 题意 :给你一个字符串,让你输出到第几个字符时,循环结的个数. 思路 :这个题和2409差不多,稍微修改一下,加一个循环就行了,用的也是K ...

随机推荐

  1. jQuery慢慢啃之事件对象(十一)

    1.event.currentTarget//在事件冒泡阶段中的当前DOM元素 $("p").click(function(event) { alert( event.curren ...

  2. InfoPath本地发布及部署

    前言 最近在接触SharePoint项目,第一次接触,总感觉有些不适应.以前只是听过,现在要遇见了,有些小紧张.今天改了一下表单的东西,也是对sharepoint的慢慢熟悉过程,分享给初学,或者未学者 ...

  3. InstallShield自定义图片资源

    DialogSetInfo ( nInfoType, szInfoString, nParameter );   nInfoType: DLG_INFO_ALTIMAGE-Specifies an a ...

  4. C语言存储类型及各存储类型作用域和生存域比较

    c语言中的存储类型有`auto`, `extern`, `register`,`static` 这四种,存储类型说明了该变量要在进程的哪一个段中分配内存空间,可以为变量分配内存存储空间的有数据区.BB ...

  5. mvc action 参数绑定——值提供器【学习笔记】

    每次http请求的各种数据(表单数据.url的数据.路由数据等等)都保存在不同的IValueProvider接口的实现类中. 而IValueProvider接口的实现类是通过ValueProvider ...

  6. E: Write error - write (28 No space left on device)

    1:在终端中运行cd命令,提示: e: Write error - write (28 No space left on device) E: Cant mmap an empty file 2:使用 ...

  7. ebook-nodej

    http://www.nodebeginner.org/index-zh-cn.html https://about.pinterest.com/careers/engineering/#oFwkXf ...

  8. bower的权限问题

    装bootstrap的时候,先用sudo指令装了bower,但是一打 bower isntall bootstrap 就报错: Error: EACCES, permission denied '/U ...

  9. Dictionary Size

    uvaLive5913:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&pag ...

  10. lua中求table长度

    关于lua table介绍,看以前的文章http://www.cnblogs.com/youxin/p/3672467.html. 官方文档是这么描述#的: 取长度操作符写作一元操作 #. 字符串的长 ...