vijosP1137 组合数
vijosP1137 组合数
【思路】
唯一分解定理。
简化式子为 : C = (n*…*m) / (n-m)!。
题目要求C质因子的数目,在质因子表上进行加减操作即数的乘除操作。
步骤:
1、 构建素数表,注意不要越界。
2、 构造e数组。
3、 累计ans
【代码】
#include<iostream>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std; const int maxn = ; int e[maxn];
int n,m,ans;
vector<int> primes; void get_primes(int n) {
bool su[maxn]; memset(su,true,sizeof(su));
for(int i=;i<=n;i++) if(su[i]) {
primes.push_back(i);
if(i<=sqrt(n)) for(int j=i*i;j<=n;j+=i) su[j]=false;
//i<=sqrt(n) 否则RE
}
} void calc(int x,int d) {
for(int i=;i<primes.size();i++) {
while(x%primes[i]==) {
e[i] += d;
x /= primes[i];
}
if(x==) break;
}
} int main() {
cin>>n>>m; get_primes(n); for(int i=m+;i<=n;i++) calc(i,);
for(int i=;i<=n-m;i++) calc(i,-); for(int i=;i<primes.size();i++) ans += e[i]? :;
cout<<ans;
return ;
}
vijosP1137 组合数的更多相关文章
- vijosP1388 二叉树数
vijosP1388 二叉树数 链接:https://vijos.org/p/1388 [思路] Catalan数.根据公式h=C(2n,n)/(n+1)计算.首先化简为 (n+i)/i的积(1< ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- 计算一维组合数的java实现
背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...
- Noip2016提高组 组合数问题problem
Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...
- C++单元测试 之 gtest -- 组合数计算.
本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- AC日记——组合数问题 落谷 P2822 noip2016day2T1
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
随机推荐
- php结合jquery异步上传图片(ajaxSubmit)
php结合jquery异步上传图片(ajaxSubmit),以下为提交页面代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi ...
- Python环境搭建(windows)
Python环境搭建(windows) Python简介 Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/),是一种面向对象.直译式计算机编程语言,具有近二十年的发展历史,成 ...
- 2016032201 - mysql5.7.10绿色版安装
参考地址:http://jingyan.baidu.com/article/ff42efa93580c4c19e2202b6.html 其实您完全可以参考上面的百度贴吧内容搞定的,我记录只是做个笔记, ...
- OpenFileDialog组件打开文件....待续
1.常用属性 InitialDirectory 对话框的初始目录 this.openFileDialog1.InitialDirectory = "d:\\"; ...
- CSS3 display:flex和display:box有什么区别?
**区别**,仅是各阶段草案命名.- W3C 2009年第1次草案:[display:box;](https://www.w3.org/TR/2009/WD-css3-flexbox-20090723 ...
- 个人作业-Homework1感想
我以前没有系统学习过C++和C#,编程能力比较差.这次个人作业对我来说是一个很大的挑战.由于布置作业的时间是开学的第一周,因为还没有从假期的状态中转换出来,这对我写作业又增加了一定的难度. 在开始写作 ...
- 对html进行SEO的一点点总结
1. 要考虑用户用哪些关键在查找您的网页 2. SE无法识别图形中的内容 3. 确保title和alt中的内容准确 4. 尽量用静态页,如果是动态页,参数要少 5. 每个图片都尽量用alt 6. 不用 ...
- Ubuntu之网络配置
一.配置大概分三类:通过配置文件配置.通过命令配置.通过图形化的网络连接菜单配置. 拨号无线等的没条件实验,不涉及. 主要文件:/etc/network/interfaces,这里是IP.网关.掩码等 ...
- Ubuntu 14.04 开启启动器图标最小化功能
转自Ubuntu 14.04 怎样开启启动器图标最小化功能 前本站报道过 Ubuntu 14.04 终于加入了启动器图标最小化功能,这个功能默认是不开启的,要怎么开启呢? 之前报道的原文阅读:Ubun ...
- Moloch
http://www.oschina.net/p/moloch maltego http://www.oschina.net/p/maltego