网络流(最大流) POJ 1637 Sightseeing tour
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 8628 | Accepted: 3636 |
Description
Input
Output
Sample Input
4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0
Sample Output
possible
impossible
impossible
possible 题意:给你一个图,其中既有有向边又有无向边,要你判断图中是否存在欧拉回路。
这题难点就在于讨论无向边的方向。首先,欧拉回路图有个性质:所有点的入度等于出度。然后又发现,对于某点连出去的一条无向边,改变它的方向,这个点的(出度-入度)奇偶性不变。所以先给无向边随意定向,然后判断是否有点的(出度-入度)为奇数,有就绝逼不可能有欧拉回路。
然而到这里还没有完,每个点的(出度-入度)都为偶数并不代表改变那些无向边的方向就可以形成一个欧拉回路图。
现在的问题类似于网络流的分配问题,设一个点的(出度-入度)为d,那么将d大于零的点和d小于零的点分成两个集合,保留原来的无向边,容量为1……具体还是看程序吧。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> using namespace std;
const int INF=;
const int maxn=,maxm=;
int cnt,fir[maxn],nxt[maxm],cap[maxm],to[maxm],dis[maxn],gap[maxn],path[maxn];
int In[maxn],Out[maxn];
void addedge(int a,int b,int c)
{
nxt[++cnt]=fir[a];
to[cnt]=b;
cap[cnt]=c;
fir[a]=cnt;
} bool BFS(int S,int T)
{
memset(dis,,sizeof(dis));
dis[T]=;
queue<int>q;q.push(T);
while(!q.empty())
{
int node=q.front();q.pop();
for(int i=fir[node];i;i=nxt[i])
{
if(dis[to[i]])continue;
dis[to[i]]=dis[node]+;
q.push(to[i]);
}
}
return dis[S];
}
int fron[maxn];
int ISAP(int S,int T)
{
if(!BFS(S,T))
return ;
for(int i=;i<=T;i++)++gap[dis[i]];
int p=S,ret=;
memcpy(fron,fir,sizeof(fir));
while(dis[S]<=T+)
{
if(p==T){
int f=INF;
while(p!=S){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
p=T;ret+=f;
while(p!=S){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
}
int &ii=fron[p];
for(;ii;ii=nxt[ii]){
if(!cap[ii]||dis[to[ii]]+!=dis[p])
continue;
else
break;
} if(ii){
p=to[ii];
path[p]=ii;
} else{
if(--gap[dis[p]]==)break;
int minn=T+;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])
minn=min(minn,dis[to[i]]);
gap[dis[p]=minn+]++;
fron[p]=fir[p];
if(p!=S)
p=to[path[p]^];
}
}
return ret;
} void Init()
{
memset(fir,,sizeof(fir));
memset(gap,,sizeof(gap));
memset(In,,sizeof(In));
memset(Out,,sizeof(Out));
cnt=;
}
int main()
{
int T,n,m;
scanf("%d",&T);
while(T--)
{
Init();
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,k;
scanf("%d%d%d",&u,&v,&k);
In[v]++;Out[u]++;
if(!k)
addedge(u,v,),addedge(v,u,);
}
int flag=;
for(int i=;i<=n;i++){
int d=Out[i]-In[i];
if(d&){
flag=;
break;
}
if(d>)addedge(,i,d/),addedge(i,,);
if(d<)addedge(i,n+,d/(-)),addedge(n+,i,);
}
if(flag)
ISAP(,n+);
for(int i=fir[];i;i=nxt[i])
if(cap[i])
flag=; if(flag)
puts("possible");
else
puts("impossible");
}
return ;
}
最后感谢邝斌的题解,%%%
网络流(最大流) POJ 1637 Sightseeing tour的更多相关文章
- POJ 1637 Sightseeing tour(最大流)
POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6448 Accepted: 2654 ...
- POJ 1637 Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9276 Accepted: 3924 ...
- POJ 1637 Sightseeing tour (混合图欧拉回路)
Sightseeing tour Description The city executive board in Lund wants to construct a sightseeing tou ...
- [POJ 1637] Sightseeing tour(网络流)
题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无 ...
- POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...
- poj 1637 Sightseeing tour——最大流+欧拉回路
题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...
随机推荐
- js数组操作的常用方法
数组:arr=[1,2,3,4,5]; 1.数组转换成字符串,不会修改原数组内容: arr.join(); // "1,2,3,4,5" arr.join("" ...
- (转)Linux内核之进程和系统调用
Linux内核之进程和系统调用 什么是系统调用 在Linux的世界里,我们经常会遇到系统调用这一术语,所谓系统调用,就是内核提供的.功能十分强大的一系列的函数.这些系统调用是在内核中实现的,再通过一定 ...
- RegistryKey 类
表示 Windows 注册表中的项级节点. 此类是注册表封装. 继承层次结构 System.Object System.MarshalByRefObject Microsoft.Win32. ...
- SQL Server 2012 LocalDB 管理之旅
SQL Server LocalDB能够最大限度地节省您的数据库管理精力,以便开发人员可以专注于开发数据库应用. 使用SqlLocalDB命令行管理LocalDB 为了方便管理,LocalDB提供了一 ...
- 【转】 UIview需要知道的一些事情:setNeedsDisplay、setNeedsLayout
原文:http://blog.sina.com.cn/s/blog_923fdd9b0101b2b4.html 1.在Mac OS中NSWindow的父类是NSResponder,而在iOS 中UIW ...
- wpf 中DataGrid 控件的样式设置及使用
本次要实现的效果为: 这个DataGrid需要绑定一个集合对象,所以要先定义一个Experience类,包含三个字段 /// <summary> /// 定义工作经历类 /// </ ...
- 浅谈angular框架
最近新接触了一个js框架angular,这个框架有着诸多特性,最为核心的是:MVVM.模块化.自动化双向数据绑定.语义化标签.依赖注入,以上这些全部都是属于angular特性,虽然说它的功能十分的强大 ...
- Java设计模式(学习整理)---工厂模式
1.工厂模式 1.1 为什么使用工厂模式? 因为工厂模式就相当于创建实例对象的new,我们经常要根据类Class生成实例对象,如A a=new A() 工厂模式也是用来创建实例对象的,所以以后new时 ...
- POJ 1236.Network of Schools (强连通)
首先要强连通缩点,统计新的图的各点的出度和入度. 第一问直接输出入度为0的点的个数 第二问是要是新的图变成一个强连通图,那么每一个点至少要有一条出边和一条入边,输出出度和入度为0的点数大的那一个 注意 ...
- NewRowNeeded和UserAddedRow事件以及RowsAdded的区别使用
NewRowNeeded事件当 VirtualMode 属性为 true 时,将在用户定位到 DataGridView 底部的新行时发生,适合给新行建立一些默认数据和按规则应该产生的数据,但此时不推荐 ...