自适应滤波:奇异值分解SVD
作者:桂。
时间:2017-04-03 19:41:26
链接:http://www.cnblogs.com/xingshansi/p/6661230.html
【读书笔记10】
前言
广义逆矩阵可以借助SVD进行求解,这在上一篇文章已经分析。本文主要对SVD进行梳理,主要包括:
1)特征向量意义;
2)特征值分解与SVD;
3)PCA与SVD;
内容为自己的学习记录,其中多有借鉴他人之处,最后一并给出链接。
一、特征向量
第一反应是:啥是特征向量?为什么好好的一个矩阵,要拆成这个模样?先看定义
$Av = \lambda v$
矩阵对应线性变换,可以看到特征向量是这样:线性变换后,只伸缩,既不平移、也不旋转。如计算$A^5v$,可以直接用$\lambda^5 v$,省去多少计算?
维基百科有一张图很直观:
她的微笑是不是有熟悉的味道o(^▽^)o?不过这里不解读微笑,看红线→:矩阵线性变换后,方向也发生了改变,所以它不是特征向量; 蓝线→:线性变换之后,方向不变,所以是特征向量。由此也可见,特征向量是一个族,而不是独一无二的。
二、奇异值分解
A-特征值分解(EVD,Eigenvalues Decomposition)
这里分析酉矩阵,假设矩阵$\bf{B}$具有${\bf{B}} = {\bf{A}}{{\bf{A}}^H}$的形式,根据特征值定义:
根据酉矩阵特性:
${\bf{B}} = {\bf{U}}\Lambda {{\bf{U}}^H}$
这里仍然可以写成求和的形式,这也是显然的:酉矩阵张成的空间,就是每一个维度成分的叠加嘛。
B-奇异值分解(SVD,Singularly Valuable Decomposition)
根据矩阵变换特性:
其中$\bf{A}$是$m$x$n$的矩阵,$\bf{U_o}$为$m$x$m$,$\bf{V_o}$为$n$x$n$定义$\bf{B}$,并借助EVD进行分析:
因为是酉矩阵,从而${{\bf{U}}_o} = {\bf{U}}$。${\bf{\Sigma }}$为$m$x$n$,且,${s_i} = \sqrt {{\lambda _i}}, i=1,2,...min(m,n)$,至此完成$\bf{U_o}$和${\bf{\Sigma }}$的求解,还剩下$\bf{V_o}$。
对于${\bf{V_o}}$则有:
${\bf{AV_o}} = {\bf{U\Sigma }}$
即${{\bf{U}}^H}{\bf{A}} = {\bf{\Sigma }}{{\bf{V_o}}^H}$,因为有对角阵,转化为向量运算很方便,对于缺失的部分可以借助施密特正交化进行补全。
至此完成SVD分解。
总结SVD思路:
步骤一:利用$AA^H$求解矩阵$U$,并构造$S$;
步骤二:求解$V_o$,并借助施密特正交化构造完整的$V$。
特征值求解、施密特正交化,任何一本线性代数应该都有,所以这里假设特征值分解EVD、施密特正交化直接调用,给出SVD求解的代码(与svd指令等价):
a = [ 1 7 5
1 6 4
2 7 8
10 5 4]';
[E,D] = eig(a*a');
%预处理
[val,pos] = sort(diag(D),'descend');
E = E(:,pos);
D = diag(val);
mina = min(size(a));
%SVD分解
U = E; %完成U求解
S = zeros(size(a));
S(1:mina,1:mina) = diag(sqrt(val(1:mina)));%完成S求解
Vo = [U(:,1:mina)'*a]'./repmat(diag(S)',size(a,2),1);%求解Vo
V = [Vo null(Vo')];%完成V求解,补全正交基,可借助施密特正交化
三、PCA与SVD
根据上文分析,可以看出SVD或者EVD都可以分解出特征值以及特征向量。
再来回顾以前PCA一文的求解思路:
- 步骤一:数据中心化——去均值,根据需要,有的需要归一化——Normalized;
- 步骤二:求解协方差矩阵;
- 步骤三:利用特征值分解/奇异值分解 求解特征值以及特征向量;
- 步骤四:利用特征向量构造投影矩阵;
- 步骤五:利用投影矩阵,得出降维的数据。
PCA的核心就是根据特征值的大小/总的比例 确定对应特征向量的个数,从而构造投影矩阵。简而言之:有了特征值、特征向量,也就相当于有了PCA。
而EVD/SVD是得到特征值、特征向量的方式,可以说EVD/SVD是PCA的基础,PCA是二者的应用方式。
自适应滤波:奇异值分解SVD的更多相关文章
- 矩阵奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...
- 奇异值分解(SVD) --- 几何意义
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...
- 自适应滤波:最小均方误差滤波器(LMS、NLMS)
作者:桂. 时间:2017-04-02 08:08:31 链接:http://www.cnblogs.com/xingshansi/p/6658203.html 声明:欢迎被转载,不过记得注明出处哦 ...
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
- 【转载】奇异值分解(SVD)计算过程示例
原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 自适应滤波:维纳滤波器——FIR及IIR设计
作者:桂. 时间:2017-03-23 06:28:45 链接:http://www.cnblogs.com/xingshansi/p/6603263.html [读书笔记02] 前言 仍然是西蒙. ...
随机推荐
- CREELINKS平台_处理器CeGpio资源使用说明(CeGpio的配置与使用)
0x00 CREELINKS平台简介 CREELINKS(创e联)是由大信科技有限公司研发,集合软硬件.操作系统.数据云储存.开发工具于一体,用于物联网产品的设计.研发与生产的平台. 平 ...
- 简学Python第三章__函数式编程、递归、内置函数
#cnblogs_post_body h2 { background: linear-gradient(to bottom, #18c0ff 0%,#0c7eff 100%); color: #fff ...
- Java自动装箱和拆箱
jdk5.0之后,在基本数据类型封装类之间增加了自动装箱和拆箱的功能,其实“自动”的实现很简单,只是将装箱和拆箱通过编译器,进行了“自动补全”,省去了开发者的手动操作. 而进行封装类与对应基本数据类型 ...
- Javascript基本语句
1.单行语句是大家用的最多的,下面讲讲复合语句的用法. 用一对花括号括起来,处理的时候,可以用单句来对待.这样做的好处是避免复合语句中语句互相干扰执行. 语法如下: { var x=1111: var ...
- Angular2 路由问题修复 、求解
Angular2 提供了比angular1 更为强大的路由功能,但是在具体使用路由过程中,可是出现了很多路由不按照预想的方式执行的问题.为了说明今天的问题,我特地新建了一个测试工程.欢迎交流. 首先介 ...
- HTML复习
- WPF DataGrid Drag
自己实现的功能.代码比较简单的DataGrid的Drag处理,着重处理DataGrid里的拖动排序. using System; using System.Collections.Generic; u ...
- Java字节码操纵框架ASM小试
本文主要内容: ASM是什么 JVM指令 Java字节码文件 ASM编程模型 ASM示例 参考资料汇总 JVM详细指令 ASM是什么 ASM是一个Java字节码操纵框架,它能被用来动态生成类或者增强既 ...
- 走进 Redis 的世界
NoSQL(Not Only SQL) 在现今已经应用非常普遍了,尤其是 Redis 和 MongoDB.我们现在来说说 Redis. 前世 Redis 是一个意大利人 Salvatore Sanfi ...
- js小动画算法
function step(A,B,rate,callback){ A = A + (B - A) / (rate || 2); if(Math.abs(A-B) < 1){ callback( ...