Python数据处理——numpy_3
通过前面两次的学习,基本上对numpy有了一定的认识,所以,接下来进一步对numpy学习。同时,最后以一个有趣的例子加深对numpy的理解。
import numpy as np
xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, True, False])
# 如果cond中的值是T时,选取xarr的值,否则从yarr中选取。这种模式就是:x if condition else y (condition与x相等,就选x,否则y)
result = [(x if c else y)
for x, y, c in zip(xarr, yarr, cond)]
#print result
'''
上面式子可以用一个函数代替:np.where( , , ,)。第一个参数是一个判定,这个判定的结果是根据后面两个参数来输出的。其中,第二个
是第一个参数的True结果输出,而第三个参数是第一个False结果输出。
'''
result = np.where(cond,xarr,yarr)
#print result from numpy.random import randn
arr = randn(4,4)
#把大于0的值变成2,小于0的值变成-2
result = np.where(arr > 0, 2, -2)
#print result
#只把大于0的值变成2,其他的不变
result = np.where(arr > 0, 2, arr)
#print result
'''
np.where(rond1 & rond2, 0,
np.where(rond1, 1,
np.where(rond2, 2, 3)))
'''
ax = np.random.randn(5, 4)
#print ax
a = ax[0,:]
#计算每一行的均值使用axis = 1 1代表行
#print ax.mean(axis=1)
#print a.mean()
b = ax[:,0]
#计算每一列的均值使用axis = 0 0代表列
#print ax.mean(axis=0)
#print b.mean()
ay = np.array([[0,1,2],
[3,4,5],
[6,7,8]])
#计算每一列前个数与后个数的和,返回的仍是一个数组。 0代表列
#print ay.cumsum(0)
#计算每一行前个数与后个数的积,返回的仍是一个数组。 1代表行
#print ay.cumprod(1) #计算ax中正数的个数, 布尔值会被强制转为1(True)和 0(False)。
#print ( ax > 0 ).sum()
import numpy as np
a = np.arange(10)
np.save("some_array", a)
b = np.load("some_array.npy")
#print b
#加载txt和逗号分隔文件(CSV)方式。保存用np.savetxt方式
#ab = np.loadtxt("array_ex.txt", delimiter= ",") #线性代数 #建立一个一维数组由3个1组成。
np.ones(3)
x = np.array([[1,2,3], [4,5,6]])
y = np.array([[6, 23],[-1, 7],[8, 9]])
#计算两个数组的乘积。dot()函数
x.dot(y)
np.dot(x, y)
np.dot(x, np.ones(3))
from numpy.random import randn
from numpy.linalg import inv, qr
X = randn(5, 5)
mat = X.T.dot(X)
#计算数组的逆
inv(mat)
mat.dot(inv(mat))
#计算QR分解
q, r = qr(mat)
#print r
最后,以随机漫步的例子,运用numpy加深对其的理解。
import random
import numpy as np
from numpy.random import randint
b = np.random.randint(0,2) # numpy中的randint不能取右端的那个值,也就是例子中(0,2)不能取到2
a = random.randint(0,2) # random中的randint是可以取到右端的值,(0,2)也就是在0,1,2中随机取值 #随机漫步(普通版)
position = 0
walk = [position]
steps = 10
for i in xrange(steps):
# 这句话实际上是一种逻辑判断句,random.randint是逻辑判断条件,与0比较。标准语句:a if condition else b .判断条件大于0,选择a,反之,选择b。
step = 1 if random.randint(0,1) else -1
position += step
walk.append(position)
#print walk #随机漫步(提升版)
nsteps = 10
draws = np.random.randint(0,2, size= nsteps)
steps = np.where(draws > 0, 1, -1)
# 将结果变成一种数组
walk = steps.cumsum()
#print walk
#只有数组能这样使用
walk.min()
walk.max()
#判断从0到2步,所需要多久,多少次。
(np.abs(walk) >= 2).argmax() #多个随机漫步
nwalks = 100
nsteps = 100
draws = np.random.randint(0,2, size=(nwalks, nsteps))
steps = np.where(draws > 0, 1, -1)
#计算每一行的累计和。“1”代表行,“0”代表列
walks = steps.cumsum(1)
walks.min()
walks.max()
#计算大于20或-20的布尔值(True,False)
np.abs(walks) >= 20
#计算每一行中有大于20或-20的布尔值
hits20 = (np.abs(walks) >= 20).any(1)
#计算达到20或-20的行,一共有多少个
hits20.sum()
#计算达到20或-20的行的漫步累计次数
walks[hits20]
#计算达到20或-20的每一行第一次漫步到20或-20的步数
crossing_times = (np.abs(walks[hits20])>= 20).argmax(1)
#计算达到20或-20的每一行第一次漫步到20或-20的步数的均值
print crossing_times.mean()
Python数据处理——numpy_3的更多相关文章
- Python数据处理PDF
Python数据处理(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1h8a5-iUr4mF7cVujgTSGOA 提取码:6fsl 复制这段内容后打开百度网盘手机A ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- 参考《Python数据处理》中英文PDF+源代码
在实际操作中掌握数据处理方法,比较实用.采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.E ...
- python数据处理技巧二
python数据处理技巧二(掌控时间) 首先简单说下关于时间的介绍其中重点是时间戳的处理,时间戳是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01月01日08时00分00 ...
- Python 数据处理之对 list 数据进行数据重排(为连续的数字序号)
Python 数据处理之对 list 数据进行数据重排(为连续的数字序号) # user ID 序号重新排,即,原来是 1,3,4,6 ,排为 1,2,3,4 # item ID 序号重新排,too ...
- Python数据处理pdf (中文版带书签)、原书代码、数据集
Python数据处理 前言 xiii第1 章 Python 简介 11.1 为什么选择Python 41.2 开始使用Python 41.2.1 Python 版本选择 51.2.2 安装Python ...
- Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)
0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...
- python数据处理书pdf版本|内附网盘链接直接提取|
Python数据处理采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.Excel.XML.J ...
- 最全总结 | 聊聊 Python 数据处理全家桶(Sqlite篇)
1. 前言 上篇文章 聊到 Python 处理 Mysql 数据库最常见的两种方式,本篇文章继续说另外一种比较常用的数据库:Sqlite Sqlite 是一种 嵌入式数据库,数据库就是一个文件,体积很 ...
随机推荐
- node c++多线程插件 第一天 c++线程相关函数
因为不会c++,今天主要是学习了一下c++的东西,感觉非常麻烦. 目前知道了c++里创建线程createThread,返回一个内核对象(HANDLE),我的理解是,c++中系统层面上的操作(线程,文件 ...
- Vue学习之路---No.5(分享心得,欢迎批评指正)
同样,首先我们还是回顾一下昨天讲到的东西: 1.常用的Vue修饰器 2.当利用js方法不修改数据,但也可以改变视图时,我们需要整体返回再整体接收 (如: items.example1 = items. ...
- C# 使用 USB转串 接收数据 问题
C# 使用 USB转串 接收数据的 问题 硬件设备是MicroUSB接口,通过USB转串驱动接入PC机.自己用winForm写了一个读取串口数据的小程序,总是接收不到数据. 用传sscom32串口工具 ...
- android 透明状态栏方法及其适配键盘上推(一)
android的状态栏(statusBar)版本的差异化比较大.在android 4.4 以上和5.x可以设置状态栏背景颜色,但是不可以设置状态栏中字和图标的颜色.而系统默认的statusbar的字体 ...
- _1_html_
创:18_3_2017修:20_3_2017什么是html? 超文本标记语言 告诉浏览器内容的语义,html中包含了各种标签html页面的框架是什么? <!DOCTYPE html> #D ...
- oracle表空间创建
/*分为四步 *//*第1步:创建临时表空间 */create temporary tablespace user_temp tempfile 'D:\oracle\oradata\Oracle9 ...
- yolov2训练ICDAR2011数据集
首先下载数据集train-textloc.zip 其groundtruth文件如下所示: 158,128,412,182,"Footpath" 442,128,501,170,&q ...
- JavaScript实现常见排序算法
列表 冒泡排序 选择排序 插入排序 快速排序 希尔排序 归并排序 冒泡排序 // 输入:[5, 6, 3, 4, 8, 0, 1, 4, 7] // 输出:[0, 1, 3, 4, 4, 5, 6, ...
- pg_config executable not found
Error: pg_config executable not found. Please add the directory containing pg_config to the PATH or ...
- 老李推荐:第14章4节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-装备ViewServer-端口转发 3
formAdbRequest我们在之前已经分析过,做的事情就是组建好ADB协议的命令以待发送给ADB服务器,在我们558行中最终组建好的ADB协议命令将会如下: “host-serial:xxx:fo ...