Description

用字符矩阵来表示一个8x8的棋盘,'.'表示是空格,'P'表示人质,'K'表示骑士。每一步,骑士可以移动到他周围的8个方格中的任意一格。如果你移动到的格子中有人质(即'P'),你将俘获他。但不能移到出棋盘或当前是'K'的格子中。请问最少要移动多少步骑士才能俘获所有的人质。

Input Format

第一行一个整数N(<=5),表示有多少个棋盘。即多组测试数据。每一组有8行,每行8个字符。字符只有'.',大写'P',大写'K'三种字符。'P'和'K'的个数范围都在[1,10]。

Output Format

有N行,每行只一个整数,相应棋盘俘获全部人质所需要的最少步数。

Sample Input

2

P......P

........

........

........

...KK...

........

........

P......P

.....P.P

..K....P

....K...

..PP...P

...K..KK

........

K.......

KP.K....

Sample Output

20

9

Solution

多亏参考了省队队长的代码,%yh,

可以发现骑士和人质数量极小,考虑状压DP。

虽然骑士有好多个,实际上他们不影响,可以先分别做DP,不妨让F[k][i][S]表示第k个骑士在第i个点且俘获状态为S的最少步数,易得F[k][j][S|1<<(j-1)]=min{f[k][i][S]+ptp[i][j]},其中ptp[i][j]表示人质i到人质j的最少步数

这里有个关键的地方就是骑士可以向8个方向移动,所以2点之间最少步数应为max(|x1-x2|,|y1-y2|)

然后记录每个骑士i对于状态S的最少步数,我的代码是用F[k][0][S]表示

接下来在做一次DP,用G[i][S]表示前i个骑士对于状态S的最少步数,

则G[i][S]=min{G[i-1][S^S2]+F[i][S2]},1<=S2<=最终状态,且(S | S2) == S,答案就很明显了

Code

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define N 12
using namespace std; struct info {
int x, y;
} k[N], p[N];
int T, knum, pnum, dis[N][N], f[N][N][1 << N], ptp[N][N], ans[N][1 << N]; inline void Init() {
memset(dis, 0, sizeof(dis));
knum = pnum = 0;
for (int i = 1; i <= 8; ++i)
for (int j = 1; j <= 8; ++j) {
char ch = getchar();
while (ch != '.' && ch != 'K' && ch != 'P') ch = getchar();
if (ch == 'K') k[++knum] = (info) {i, j};
if (ch == 'P') p[++pnum] = (info) {i, j};
} for (int i = 1; i <= knum; ++i)
for (int j = 1; j <= pnum; ++j) {
int x1 = k[i].x, y1 = k[i].y, x2 = p[j].x, y2 = p[j].y;
dis[i][j] = max(fabs(x1 - x2), fabs(y1 - y2));
}
for (int i = 1; i <= pnum; ++i)
for (int j = i + 1; j <= pnum; ++j) {
int x1 = p[i].x, y1 = p[i].y, x2 = p[j].x, y2 = p[j].y;
ptp[i][j] = ptp[j][i] = max(fabs(x1 - x2), fabs(y1 - y2));
}
} inline void DP(int k) {
for (int i = 1; i <= pnum; ++i)
f[k][i][1 << (i - 1)] = dis[k][i];
for (int S = 1; S < (1 << pnum); ++S)
for (int i = 1; i <= pnum; ++i)
if (S & (1 << (i - 1)))
for (int j = 1; j <= pnum; ++j)
if (!(S & (1 << (j - 1))))
f[k][j][S | (1 << (j - 1))] = min(f[k][j][S | (1 << (j - 1))], f[k][i][S] + ptp[i][j]);
} int main() {
scanf("%d", &T);
while (T--) {
Init(); memset(f, 0x3f, sizeof(f));
for (int k = 1; k <= knum; ++k) {
DP(k);
for (int S = 1; S < (1 << pnum); ++S)
for (int i = 1; i <= pnum; ++i)
f[k][0][S] = min(f[k][0][S], f[k][i][S]);
} memset(ans, 0x3f, sizeof(ans));
ans[0][0] = 0;
for (int i = 1; i <= knum; ++i) {
ans[i][0] = 0;
for (int S = 1; S < (1 << pnum); ++S) {
ans[i][S] = ans[i - 1][S];
for (int g = 1; g < (1 << pnum); ++g) {
if ((S | g) != S) continue;
ans[i][S] = min(ans[i][S], ans[i - 1][S ^ g] + f[i][0][g]);
}
}
}
printf("%d\n", ans[knum][(1 << pnum) - 1]);
}
return 0;
}

SGU 223 Little Kings(状压DP)的更多相关文章

  1. SGU 131. Hardwood floor 状压dp 难度:2

    131. Hardwood floor time limit per test: 0.25 sec. memory limit per test: 4096 KB The banquet hall o ...

  2. 状压DP SGU 223 Little Kings

    题目传送门 /* 题意:n*n的矩阵,放置k个king,要求king互相不能攻击,即一个king的8个方向都没有另外的king,求方案个数 状态压缩DP:dp[i][num[j]][s] 代表在第i行 ...

  3. Kings(状压DP)

    Description 用字符矩阵来表示一个8x8的棋盘,'.'表示是空格,'P'表示人质,'K'表示骑士.每一步,骑士可以移动到他周围的8个方格中的任意一格.如果你移动到的格子中有人质(即'P'), ...

  4. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  5. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  6. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  7. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  8. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

  9. bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)

    数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...

随机推荐

  1. Git与码云(Git@OSC)入门-如何在实验室和宿舍同步你的代码(2)

    4. 处理冲突 4.1 向远程仓库push时无法提交成功,提示在push前应该先pull 如图所示: 有可能是因为远程仓库的版本与本地仓库的版本不一致,所以应先git pull将远程仓库的内容合并到本 ...

  2. 社工数据搜索引擎搭建 - Build Social Engineer Evildata Search Engine

    如何设计搭建一个社工库 从初起设计一个社工库,到现在的Beta,前前后后零零整整花了不下一个月的时间,林林总总记录下来,留给需要之人 泄露数据库格式不一,长相奇葩,因需将用户名.密码.邮箱.哈希等信息 ...

  3. 关于百度DNS的解析过程

    if现在我用一台电脑,通过ISP接入互联网,那么ISP就会分配给我一个DNS服务器(非权威服务器). now,我的computer向这台ISPDNS发起请求查询www.baidu.com. 首先,IS ...

  4. 201521123003《Java程序设计》第12周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 将Student对象(属性:int id, String name,int age,doubl ...

  5. node.js的安装及配置

    一.安装 直接在浏览器搜索node.js,在官网上下载(一般旧版的更加稳定,比如下载4.4.7版本) 点击DOWNLOADS 往下翻,点击Previous Release Windows下载msi(6 ...

  6. Android 之内容提供者 内容解析者 内容观察者

    contentProvider:ContentProvider在Android中的作用是对外提供数据,除了可以为所在应用提供数据外,还可以共享数据给其他应用,这是Android中解决应用之间数据共享的 ...

  7. hadoop2.0的数据副本存放策略

    在hadoop2.0中,datanode数据副本存放磁盘选择策略有两种方式: 第一种是沿用hadoop1.0的磁盘目录轮询方式,实现类:RoundRobinVolumeChoosingPolicy.j ...

  8. 关于使用git和github的一点点感想

    第二篇博客 首先附上我的第一个java程序github地址: https://github.com/KingsC123456/FirstJavaHello 其次是关于我的github介绍,因为一直使用 ...

  9. echo和print的区别

    1.echo可以同时输出多个字符串: echo 'this',' string',' is'," hello world\n"; 2.print有返回值,但是运行速度上echo比较 ...

  10. ArrayList,LinkedListd等容器使用时注意点:

    1.对这两个List(包括其他的类似容器),如果向里面加入一个元素(引用数据类型),那么这个List里面保存的是这个对象的引用: 如果想要避免这种现象可以这样:在加入新的元素时不直接压,将已有的对象复 ...