[USACO07NOV]电话线Telephone Wire

时间限制: 1 Sec  内存限制: 128 MB

题目描述

电信公司要更换某个城市的网线。新网线架设在原有的 N(2 <= N <= 100,000)根电线杆上, 第
i 根电线杆的高度为 height_i 米(1 <= height_i <= 100)。 网线总是从一根电线杆的顶端被引到
相邻的那根的顶端,如果这两根电线杆的高度不同,那么电信公司就必须为此支付 C*电线
杆高度差(1 <= C <= 100)的费用。电线杆不能移动, 只能在相邻电线杆间按原有的顺序架设
网线。加高某些电线杆能减少架设网线的总花费,但需要支付一定的费用,一根电线杆加高
X 米的费用是 X^2。 请你计算一下,如何合理地进行这两种工作,使网线改造工程的最小费
用。

输入

  • Line 1: Two space-separated integers: N and C

  • Lines 2..N+1: Line i+1 contains a single integer: heighti

输出

  • Line 1: The minimum total amount of money that it will cost Farmer John to attach the new telephone wire.

样例输入

5 2
2
3
5
1
4

样例输出

15
题解:
f[i][j]表示第i个电线杆高度为j时所需要的最少的费用。
然后很快就可以得出暴力代码,每次枚举上一个电线杆的高度就可以了。
先付上暴力代码:(TLE到爆表)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
using namespace std;
long long n,m;
long long a[],f[][],mmax;
int main()
{
long long i,j,k;
scanf("%lld%lld",&n,&m);
memset(f,/,sizeof(f));
for(i=;i<=n;i++)
{
scanf("%lld",&a[i]);
mmax=max(mmax,a[i]);
}
for(i=a[];i<=mmax;i++)
{
int s=i-a[];
f[][i]=s*s;
}
for(i=;i<=n;i++)
{
for(j=a[i-];j<=mmax;j++)
{
for(k=a[i];k<=mmax;k++)
{
int s=k-a[i];
f[i][k]=min(f[i][k],s*s+f[i-][j]+m*abs(j-k));
}
}
}
long long ans=;
for(i=a[n];i<=mmax;i++)
ans=min(ans,f[n][i]);
cout<<ans;
return ;
}

显然是需要优化的,仔细想一想就可以看出,每次实际上只有两种情况:

1.i-1的高度比i低。

2.i-1的高度比i高。

第一种情况下f[i][j]的结果为f[i-1][min]+abs(j-min)*k+(j-a[i])^2显然是有最小值的,所以只要记录min就可以直接算出f[i][j]的值。

第二种情况下f[i][j]的结果为f[i-1][min]+abs(j-min)*k+(j-a[i])^2,但由于随着j的增加每次min的值都有可能会改变,所以需要用到一个单调队列来记录最小值。

以下为AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
using namespace std;
long long n,m;
long long a[],f[][],mmax;
int main()
{
long long i,j,k;
scanf("%lld%lld",&n,&m);
memset(f,,sizeof(f));
for(i=; i<=n; i++)
{
scanf("%lld",&a[i]);
mmax=max(mmax,a[i]);
}
for(i=a[]; i<=mmax; i++)
{
int s=i-a[];
f[][i]=s*s;
}
for(i=; i<=n; i++)
{
int p[],head=,tail=,mmin=;
for(j=a[i-];j<a[i];j++)
{
if(f[i-][j]+abs(a[i]-j)*m<f[i-][mmin]+abs(a[i]-mmin)*m||mmin==)
mmin=j;
}
int ssss=max(a[i],a[i-]);
p[++tail]=ssss;
for(j=ssss+;j<=mmax;j++)
{
while(f[i-][j]+abs(j-a[i])*m<f[i-][p[tail]]+abs(p[tail]-a[i])*m&&head<=tail)tail--;
p[++tail]=j;
}
for(j=a[i];j<=mmax;j++)
{
f[i][j]=min(f[i][j],f[i-][mmin]+abs(j-mmin)*m+(j-a[i])*(j-a[i]));
f[i][j]=min(f[i][j],f[i-][p[head]]+abs(j-p[head])*m+(j-a[i])*(j-a[i]));
if(f[i-][mmin]-abs(j-mmin)*m>f[i-][j])mmin=j;
if(p[head]==j)head++;
}
}
long long ans=1e18;
for(i=a[n]; i<=mmax; i++)
ans=min(ans,f[n][i]);
cout<<ans;
return ;
}

[USACO07NOV]电话线Telephone Wire的更多相关文章

  1. P2885 [USACO07NOV]电话线Telephone Wire

    P2885 [USACO07NOV]电话线Telephone Wire 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话 ...

  2. P2885 [USACO07NOV]电话线Telephone Wire——Chemist

    题目: https://www.luogu.org/problemnew/show/P2885 由于把每一根电线杆增加多少高度不确定,所以很难直接通过某种方法算出答案,考虑动态规划. 状态:f [ i ...

  3. [luoguP2885] [USACO07NOV]电话线Telephone Wire(DP + 贪心)

    传送门 真是诡异. 首先 O(n * 100 * 100) 三重循环 f[i][j] 表示到第 i 个柱子,高度是 j 的最小花费 f[i][j] = min(f[i - 1][k] + abs(k ...

  4. 【USACO07NOV】电话线Telephone Wire

    题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N <= 100,000)根电线杆上, 第 i 根电线杆的高度为 height_i 米(1 <= heigh ...

  5. [USACO 07NOV]电话线Telephone Wire

    题目描述 Farmer John's cows are getting restless about their poor telephone service; they want FJ to rep ...

  6. 【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线

    可能是一类dp的通用优化 Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设 ...

  7. DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885

    本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...

  8. BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP

    BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...

  9. bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)

    1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 441  Solved: ...

随机推荐

  1. 简析ASP.NET WebApi的跨域签名

    之前的文章写了关于WebApi的跨域问题,当中的方法只是解决了简单请求的跨域问题而非简单请求的跨域问题则没有解决. 要弄清楚 CORS规范将哪些类型的跨域资源请求划分为简单请求的范畴,需要额外了解几个 ...

  2. web开发中,post与get的区别

    区别: 1.Get是从服务器上获取数据,Post是向服务器传送数据. 2.Get是把参数数据队列加到提交表单的Action属性所指的URL中,值和表单内各个字段一一对应,在URL中可以看到.Post是 ...

  3. Viewpager结合fragment实现底部导航

    具体实现如下: FindFragment.java package fbtt.com.fbtt.fragment; import android.os.Bundle; import android.s ...

  4. 路由-when-resolve

    文件列表:luyou.html,app.js,home.html,user.html,wy.json luyou.html <!DOCTYPE html> <html ng-app= ...

  5. 在Windows上安装MongoDB

    原文官方文档:https://docs.mongodb.org/v2.6/tutorial/install-mongodb-on-windows/ 基于版本:MongoDB 2.6 概览 通过这个示例 ...

  6. ASP.NET MVC5路由系统机制详细讲解

    请求一个ASP.NET mvc的网站和以前的web form是有区别的,ASP.NET MVC框架内部给我们提供了路由机制,当IIS接受到一个请求时,会先看是否请求了一个静态资源(.html,css, ...

  7. Python的join()函数和split()函数

    join()方法 ------------------------------------------------------------------------------------------- ...

  8. ORACLE聚合函数细节

    select * from emp order by mgr; 概要 select count(1), --14 sum(1), --14 count(*), --14 count(distinct ...

  9. Ajax请求汇总(一)

    刚开始结束Ajax请求的时候,那真的是迷迷糊糊,昏天暗地,通过学习的深入和翻阅各种资料.求助度娘,总结一下Ajax请求,与大家分享一下,希望能给学习Ajax的同学一些帮助,废话不多手,直接开始~~~ ...

  10. 【原创+史上最全】Nginx+ffmpeg实现流媒体直播点播系统

    #centos6.6安装搭建nginx+ffmpeg流媒体服务器 #此系统实现了视频文件的直播及缓存点播,并支持移动端播放(支持Apple和Android端) #系统需要自行安装,流媒体服务器配置完成 ...