深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早就有所出现,但是由于深度学习的计算复杂度问题,一直没有被广泛应用。

一般的,卷积层的计算形式为:

其中、x分别表示当前卷积层中第j个特征、前一层的第i个特征;k表示当前层的第j个特征与前一层的第i个特征之间的卷积核;M表示需要卷积的前一层的特征的集合,b表示当前卷积层中第j个卷积核对应的偏置。f为激活函数。

卷积层中的权值与阈值通过随机梯度下降法得到:

式中,a为学习率。

损失函数对卷积层参数的梯度可通过链式求导来得到,如下:

式中,表示前一层的梯度。

卷积神经网络中的激活函数有多种形式:

式中a为固定的参数。

式中,每个batch训练样本中的都随机采样自均值分布,在测试中取

从上述卷积神经网络看出,学习过程中需要进行梯度迭代,真正在实现工业检测等实际应用时时间复杂度极高,因此学术界进行了优化,优化后的一种单层神经网络极限学习机解决了此问题,在过去应用十分广泛。

为解决上述问题,出现了极限学习机。

用最小二乘法解决的一种特殊结果为,等价为一种矩阵求逆的形式

为的Moore-Penrose广义逆。

1)由于极限学习机求取权值的时候只是计算一个广义逆,因此训练速度比基于梯度的学习算法快很多;

2)基于梯度的学习算法存在很多问题,比如学习速率难以确定、局部网络最小化等,极限学习机有效的改善了此类问题,在分类过程中取得了更好的效果;

3)与其他神经网络算法不同,极限学习机在训练过程中,选择激活函数过程中可以选择不可微函数。;

4)极限学习机算法训练过程并不复杂。极限学习机只需要三步就可以完成整个的学习过程。

以下用R代码讲解一下极限学习机

###训练过程如下:

训练过程4步即可。

elmtrain.default <-
function(x,y,nhid,actfun,...) {
require(MASS) if(nhid < 1) stop("ERROR: number of hidden neurons must be >= 1")
########1.选择数据,X与Y
T <- t(y)
P <- t(x)
########2.随机产生权值,目的在于将X值进行变化 inpweight <- randomMatrix(nrow(P),nhid,-1,1)
tempH <- inpweight %*% P
biashid <- runif(nhid,min=-1,max=1)
biasMatrix <- matrix(rep(biashid, ncol(P)), nrow=nhid, ncol=ncol(P), byrow = F) tempH = tempH + biasMatrix
########3.将变化后的X值进行高维映射,最常用是sig函数
if(actfun == "sig") H = 1 / (1 + exp(-1*tempH))
else {
if(actfun == "sin") H = sin(tempH)
else {
if(actfun == "radbas") H = exp(-1*(tempH^2))
else {
if(actfun == "hardlim") H = hardlim(tempH)
else {
if(actfun == "hardlims") H = hardlims(tempH)
else {
if(actfun == "satlins") H = satlins(tempH)
else {
if(actfun == "tansig") H = 2/(1+exp(-2*tempH))-1
else {
if(actfun == "tribas") H = tribas(tempH)
else {
if(actfun == "poslin") H = poslin(tempH)
else {
if(actfun == "purelin") H = tempH
else stop(paste("ERROR: ",actfun," is not a valid activation function.",sep=""))
}
}
}
}
}
}
}
}
} ########4.拟合出模型系数,即Y=AX中的A
outweight <- ginv(t(H), tol = sqrt(.Machine$double.eps)) %*% t(T)
Y <- t(t(H) %*% outweight)
model = list(inpweight=inpweight,biashid=biashid,outweight=outweight,actfun=actfun,nhid=nhid,predictions=t(Y))
model$fitted.values <- t(Y)
model$residuals <- y - model$fitted.values
model$call <- match.call()
class(model) <- "elmNN"
model
}

测试过程,过程4步即可。

function (object, newdata = NULL, ...) 
{
if (is.null(newdata))
predictions <- fitted(object)
else {
if (!is.null(object$formula)) {
x <- model.matrix(object$formula, newdata)
}
else {
x <- newdata
} ########1.获取训练模型中的参数
inpweight <- object$inpweight
biashid <- object$biashid
outweight <- object$outweight
actfun <- object$actfun
nhid <- object$nhid
TV.P <- t(x) ########2.通过参数将X值进行变化 tmpHTest = inpweight %*% TV.P
biasMatrixTE <- matrix(rep(biashid, ncol(TV.P)), nrow = nhid,
ncol = ncol(TV.P), byrow = F)
tmpHTest = tmpHTest + biasMatrixTE ########3.高维度映射,通常选择sig函数
if (actfun == "sig")
HTest = 1/(1 + exp(-1 * tmpHTest))
else {
if (actfun == "sin")
HTest = sin(tmpHTest)
else {
if (actfun == "radbas")
HTest = exp(-1 * (tmpHTest^2))
else {
if (actfun == "hardlim")
HTest = hardlim(tmpHTest)
else {
if (actfun == "hardlims")
HTest = hardlims(tmpHTest)
else {
if (actfun == "satlins")
HTest = satlins(tmpHTest)
else {
if (actfun == "tansig")
HTest = 2/(1 + exp(-2 * tmpHTest)) -
1
else {
if (actfun == "tribas")
HTest = tribas(tmpHTest)
else {
if (actfun == "poslin")
HTest = poslin(tmpHTest)
else {
if (actfun == "purelin")
HTest = tmpHTest
else stop(paste("ERROR: ", actfun,
" is not a valid activation function.",
sep = ""))
}
}
}
}
}
}
}
}
} ########4.进行预测的值计算,即Y(预测)=AX
TY = t(t(HTest) %*% outweight)
predictions <- t(TY)
}
predictions
}

通过R讲述了极限学习机的内部构造,以下是R自带的示例:通过极限学习机预测

library(elmNN)
set.seed(1234)
Var1 <- runif(50, 0, 100)
sqrt.data <- data.frame(Var1, Sqrt=sqrt(Var1))
model <- elmtrain.formula(Sqrt~Var1, data=sqrt.data, nhid=10, actfun="sig")
new <- data.frame(Sqrt=0,Var1 = runif(50,0,100))
p <- predict(model,newdata=new) 转自:https://ask.hellobi.com/blog/Zason/4543

R语言快速深度学习进行回归预测(转)的更多相关文章

  1. 极限学习机︱R语言快速深度学习进行回归预测

    本文转载于张聪的博客,链接:https://ask.hellobi.com/blog/zason/4543. 深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早 ...

  2. 碎片︱R语言与深度学习

    笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ---------------- ...

  3. R语言︱H2o深度学习的一些R语言实践——H2o包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...

  4. MxNet+R︱用R语言实现深度学习(单CPU/API接口,一)

    MxNet有了亚马逊站台之后,声势大涨,加之接口多样化,又支持R语言所以一定要学一下.而且作为R语言的fans,为啥咱们R语言就不能上深度学习嘞~ -------------------------- ...

  5. R语言书籍的学习路线图

    现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑 ...

  6. R语言与机器学习学习笔记

    人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...

  7. R语言网络爬虫学习 基于rvest包

    R语言网络爬虫学习 基于rvest包 龙君蛋君:2015年3月26日 1.背景介绍: 前几天看到有人写了一篇用R爬虫的文章,感兴趣,于是自己学习了.好吧,其实我和那篇文章R语言爬虫初尝试-基于RVES ...

  8. R语言与显著性检验学习笔记

    R语言与显著性检验学习笔记 一.何为显著性检验 显著性检验的思想十分的简单,就是认为小概率事件不可能发生.虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验 ...

  9. R语言函数化学习笔记6

    R语言函数化学习笔记 1.apply函数 可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式 2.sapply函数 原理和list一样,但是输出的结果是一个向量的形式 ...

随机推荐

  1. nagios报错HTTP WARNING: HTTP/1.1 403 Forbidden解决方法

    Nagios--localhost报警:"WARNING: HTTP/1.1 403 Forbidden "解决方法: In dashboard it shows alert on ...

  2. JS常用特效方法总结

    1.按Ctrl提交 <body onkeydown="if(event.ctrlKey&&event.keyCode=='13') form1.submit.click ...

  3. 解决IE6下 PNG图片有背景问题

    IE6下有时候png格式的图片会存在背景的问题,以下是我常用的解决办法: <!--[if IE 6]> <script src="js/DD_belatedPNG_0.0. ...

  4. javaScript 中String的常用方法

    1.length() 字符串的长度 例:char chars[]={'a','b'.'c'}; String s=new String(chars); int len=s.length(); 2.ch ...

  5. lua metatable(元表)

    lua metatable (元表) 概述 普通 table 类型的表仅能够做一些单表操作, 无法进行一些特殊的以及两个表的操作, 比如 table1 + table2, print(table3) ...

  6. 过滤器Filter(17/4/8)

    1:是JavaWeb三大组件之一: Servlet.Lisener(2个感知监听器不需要配置).Filter 2:过滤器 它会在一组资源(jsp.servlet.css.html等等)的前面执行! 它 ...

  7. [ SharePoint ADFS 开发部署系列 (一)]

    前言 本文完全原创,转载请说明出处,希望对大家有用. 随着企业信息化建设逐渐成熟,基于微软体系的企业内部系统架构在众多企业中得到应用,随之而来的用户统一身份认证(SSO)问题成为企业IT部门急需解决的 ...

  8. python自动化开发-[第一天]-基础数据类型与编码

    1.Python与其他语言对比 - C语言的解释方式  代码-->机器码-->计算机 - python,java,php等高级语言的解释方式  代码-->字节码-->机器码-- ...

  9. (转载)Linux查看文件编码格式及文件编码转换

    Linux查看文件编码格式及文件编码转换 时间:2011-04-08作者:woyoo分类:linux评论:0 我友分享: 新浪微博 腾讯微博 搜狐微博 网易微博 开心网 QQ空间 msn 如果你需要在 ...

  10. BZOJ 1266: [AHOI2006]上学路线route

    题目描述 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:"很 ...