本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/

题目出处:

https://www.vijos.org/p/1057

题目描述:

给一个N*M的土地,由0和1表示,0表示瑕疵,1表示完好,找出最大的完好的正方形土地?

输入:

输入文件第一行为两个整数n,m(1<=n,m<=1000),接下来n行,每行m个数字,用空格隔开。0表示该块土地有瑕疵,1表示该块土地完好

4 4

0 1 1 1

1 1 1 0

0 1 1 0

1 1 0 1

思路分析:

首先看数据范围,1~1000,存储地图需要O(n*m)的内存空间,空间复杂度可控;再看时间复杂度,遍历所有点为O(n*m);

为什么要先分析空间及时间复杂度呢?因为很多时候,数据规模就决定了算法,如果数据规模为1~1000000000,你还会考虑O(n*n)的算法吗,肯定不会,这种数据一看就知道最优解法为线性复杂度O(n)的算法;

列举如下3处情况:图中彩色方框都为1,白色方框都为0

假设地图中存在一个最大的正方形,则该正方形存在一个右下角P点,且该点为1;

如果当某一个点P(i,j)为0时,则以该点为右下角不存在正方形,所以该点也不可能在最大的正方形中。

不同情况列举:

图P1.1

当P(i,j)=1时,可以看出以P为右下角,最优解由红色边长决定,即以P点为起点,向左连续为1的最多个数,木桶原理

图P1.2

当P(i,j)=1时,可以看出以P为右下角,最优解由紫色边长决定,即以M点为右下角能组成的最大的正方形

图P1.3

当P(i,j)=1时,可以看出以P为右下角,最优解由绿色边长决定,即以P点为起点,向上连续为1的最多个数

则可以建立如下DP公式

设f[i][j]:以点(i,j)为右下角,能组成的最大正方形边长

left[i][j]:以点(i,j)为起点,向左最大连续1的个数,提前初始化

up[i][j]:以点(i,j)为起点,向上最大连续1的个数,提前初始化

f[i][j]=max(f[i-1][j-1]+1, left[i][j], up[i][j])

注:地图为一行或者一列时,提前预处理,方便后面递推

C++源码如下:

github: https://github.com/Kyle-Wilson1/Vijos/tree/master/P1057

#include <iostream>
#include <fstream>
#include <vector> using namespace std; struct Node {
int left, up;
}; int main() {
ifstream cin("a.in");
ofstream cout("a.out"); vector<vector<int>> f(1000, vector<int>(1000, 0));
vector<vector<int>> map(1000, vector<int>(1000, 0));
Node initNode{0, 0};
vector<vector<Node>> node(1000, vector<Node>(1000, initNode)); int n, m, i, j, maxSquare = 0; cin >> n >> m;
//input
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
cin >> map[i][j]; //init left
for (i = 0; i < n; i++)
for (j = 0; j < m; j++) {
if (j == 0) {
if (map[i][j] == 1) {
node[i][j].left = 1;
} else { node[i][j].left = 0; }
} else {
if (map[i][j] == 1) {
node[i][j].left = node[i][j - 1].left + 1;
} else {
node[i][j].left = 0;
}
}
} //init up
for (j = 0; j < m; j++)
for (i = 0; i < n; i++) {
if (i == 0) {
if (map[i][j] == 1) {
node[i][j].up = 1;
} else { node[i][j].up = 0; }
} else {
if (map[i][j] == 1) {
node[i][j].up = node[i - 1][j].up + 1;
} else {
node[i][j].up = 0;
}
}
} auto maxOfTwo = [](int a, int b) { return a > b ? a : b; };
auto minOfThree = [](int a, int b, int c) { return a < b ? a < c ? a : c : b < c ? b : c; }; //dynamic programming
for (i = 0; i < n; i++) {
if (map[i][0] == 1) {
f[i][0] = 1;
maxSquare = 1;
} else f[i][0] = 0;
} for (j = 1; j < m; j++) {
if (map[0][j] == 1) {
f[0][j] = 1;
maxSquare = 1;
} else f[0][j] = 0;
} for (i = 1; i < n; i++)
for (j = 1; j < m; j++) {
f[i][j] = minOfThree(node[i][j].left, node[i][j].up, f[i - 1][j - 1] + 1);
maxSquare = maxOfTwo(f[i][j], maxSquare);
} cout << maxSquare;
cin.close();
cout.close();
return 0;
}

Vijos-P1057题解的更多相关文章

  1. 区间 (vijos 1439) 题解

    [问题描述] 现给定n个闭区间[ai,bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排 ...

  2. vijos题解

    Vijos题解 题库地址:https://vijos.org/p P1001 谁拿了最多奖学金 题意:按照指定要求计算奖学金,直接用if判断即可 #include<iostream> us ...

  3. [题解]vijos & codevs 能量项链

    a { text-decoration: none; font-family: "comic sans ms" } .math { color: gray; font-family ...

  4. [题解]vijos 运输计划

    Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家 ...

  5. 集合删数 (vijos 1545) 题解

    [问题描述] 一个集合有如下元素:1是集合元素:若P是集合的元素,则2 * P +1,4*P+5也是集合的元素,取出此集合中最小的K个元素,按从小到大的顺序组合成一个多位数,现要求从中删除M个数位上的 ...

  6. 洛谷P1057传球游戏题解

    题目 这个题表面上看并不像DP,但是当我们看到方案数时,我们可能会想到什么??? 对,分类加法原理,在每一轮中,每一个点的方案数都要加上这个点左边的方案与右边的方案. 因此我们可以枚举,设一个DP数组 ...

  7. 小胖守皇宫(VIJOS P1144 )题解

    题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每 ...

  8. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  9. 【BZOJ 1065】【Vijos 1826】【NOI 2008】奥运物流

    http://www.lydsy.com/JudgeOnline/problem.php?id=1065 https://vijos.org/p/1826 好难的题啊TWT ∈我这辈子也想不出来系列~ ...

  10. Vijos1448校门外的树 题解

    Vijos1448校门外的树 题解 描述: 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的…… 如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现 ...

随机推荐

  1. jquery技巧小结

    由于主要还是负责后端,所以前端很多东西都不熟悉,jQuery作为web开发必备技能,有很多知识点,老是记不清楚,所以在这边整理一下. 1.加载页面后执行 $(function(){ //程序段 }) ...

  2. mysql中对字符集和校对规则的认识

    字符集:指符号和字符编码的集合.校对规则:比较字符编码的方式.GBK2312:主要包括简体中文字符及常用符号,对于中文字符采用双字节编码的格式,也就是说一个汉字字符在存储占两个字节.GBK:包括有中. ...

  3. canvas 从初级到XX 2# 让我们在之前的基础之上,再迈进一步吧 [中级向] (上)

    还是老样子,先啰嗦一点前言. 最近各种事务缠身,所以也就隔了比较长的时间才开始码这篇文.希望不会这么快就过气. 好了,接下来就开始码代码.(写到中途,突然感觉到的.本篇设计大量初中物理知识,请怀念的往 ...

  4. Java中的UDP应用

    我在<JavaSE项目之聊天室>中通过遵守TCP协议的ServerSocket与Socket实现了聊天室的群聊窗口.同时,在介绍OSI与TCP/IP参考模型时,也曾提及TCP与UDP(全称 ...

  5. bzoj 3620: 似乎在梦中见过的样子

    Description "Madoka,不要相信 QB!"伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个噩梦,也同时是上个轮回 ...

  6. vue.js之过滤器,自定义指令,自定义键盘信息以及监听数据变化

    一.监听数据变化 1.监听数据变化有两种,深度和浅度,形式如下: vm.$watch(name,fnCb); //浅度 vm.$watch(name,fnCb,{deep:true}); //深度监视 ...

  7. java.util.HashSet

    Operations Time Complexity Notes add, remove, contains, size O(1) assuming the hash functions has di ...

  8. ab返回结果参数分析

    Server Software    返回的第一次成功的服务器响应的HTTP头.Server Hostname    命令行中给出的域名或IP地址Server Port    命令行中给出端口.如果没 ...

  9. Centos7 安装oracle数据库

    参考的内容: http://docs.oracle.com/cd/E11882_01/install.112/e24325/toc.htm#CHDCBCJF http://www.cnblogs.co ...

  10. sql sever[基本] ''增删改'' 随笔

    结构语言分类 DDL(数据定义语言)  create  drop  alter   创建删除以及修改数据库,表,存储过程,触发器,索引.... DML(数据操作语言)   insert  delete ...