[转载] 一致性hash算法释义
转载自http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html
一致性Hash算法背景
一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用。
但现在一致性hash算法在分布式系统中也得到了广泛应用,研究过memcached缓存数据库的人都知道,memcached服务器端本身不提供分布式cache的一致性,而是由客户端来提供,具体在计算一致性hash时采用如下步骤:
- 首先求出memcached服务器(节点)的哈希值,并将其配置到0~232的圆(continuum)上。
- 然后采用同样的方法求出存储数据的键的哈希值,并映射到相同的圆上。
- 然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232仍然找不到服务器,就会保存到第一台memcached服务器上。
从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化而影响缓存的命中率,但Consistent Hashing中,只有在园(continuum)上增加服务器的地点逆时针方向的第一台服务器上的键会受到影响,如下图所示:
一致性Hash性质
考虑到分布式系统每个节点都有可能失效,并且新的节点很可能动态的增加进来,如何保证当系统的节点数目发生变化时仍然能够对外提供良好的服务,这是值得考虑的,尤其实在设计分布式缓存系统时,如果某台服务器失效,对于整个系统来说如果不采用合适的算法来保证一致性,那么缓存于系统中的所有数据都可能会失效(即由于系统节点数目变少,客户端在请求某一对象时需要重新计算其hash值(通常与系统中的节点数目有关),由于hash值已经改变,所以很可能找不到保存该对象的服务器节点),因此一致性hash就显得至关重要,良好的分布式cahce系统中的一致性hash算法应该满足以下几个方面:
- 平衡性(Balance)
平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
- 单调性(Monotonicity)
单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲区加入到系统中,那么哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲区中去,而不会被映射到旧的缓冲集合中的其他缓冲区。简单的哈希算法往往不能满足单调性的要求,如最简单的线性哈希:x = (ax + b) mod (P),在上式中,P表示全部缓冲的大小。不难看出,当缓冲大小发生变化时(从P1到P2),原来所有的哈希结果均会发生变化,从而不满足单调性的要求。哈希结果的变化意味着当缓冲空间发生变化时,所有的映射关系需要在系统内全部更新。而在P2P系统内,缓冲的变化等价于Peer加入或退出系统,这一情况在P2P系统中会频繁发生,因此会带来极大计算和传输负荷。单调性就是要求哈希算法能够应对这种情况。
- 分散性(Spread)
在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。
- 负载(Load)
负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。
- 平滑性(Smoothness)
平滑性是指缓存服务器的数目平滑改变和缓存对象的平滑改变是一致的。
原理
基本概念
一致性哈希算法(Consistent Hashing)最早在论文《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》中被提出。简单来说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间环如下:
整个空间按顺时针方向组织。0和232-1在零点中方向重合。
下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用ip地址哈希后在环空间的位置如下:
接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器。
例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:
根据一致性哈希算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
下面分析一致性哈希算法的容错性和可扩展性。现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:
此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X 。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。
综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。
另外,一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如系统中只有两台服务器,其环分布如下,
此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:
同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。
相关实现
- Consistent hashing implementation in C++
- Consistent hashing implementation in Erlang
- Consistent hashing implementation in C#
- Consistent hashing implementation in Java
- Consistent hashing implementation in C
参考文献
[1]. D. Darger, E. Lehman, T. Leighton, M. Levine, D. Lewin and R. Panigrahy. Consistent Hashing and Random Trees:Distributed Caching Protocols for Relieving Hot Spots On the World Wide Web. ACM Symposium on Theory of Computing, 1997. 1997:654-663.
[2]. 一致性哈希. http://baike.baidu.com/view/1588037.htm
[3]. memcached全面剖析–4. memcached的分布式算法. http://tech.idv2.com/2008/07/24/memcached-004/
[4]. 一致性哈希算法及其在分布式系统中的应用. http://www.codinglabs.org/html/consistent-hashing.html
[5]. Consistent hashing. http://en.wikipedia.org/wiki/Consistent_hashing
[6]. http://www.lexemetech.com/2007/11/consistent-hashing.html
[转载] 一致性hash算法释义的更多相关文章
- 【转载】一致性hash算法释义
http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html 一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Karge ...
- 【转载】对一致性Hash算法,Java代码实现的深入研究
原文地址:http://www.cnblogs.com/xrq730/p/5186728.html 一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细 ...
- 一致性Hash算法(转载)
原文地址http://blog.csdn.net/caigen1988/article/details/7708806 consistent hashing 算法早在 1997 年就在论文 Con ...
- 一致性hash算法详解
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...
- 一致性 hash 算法( consistent hashing )a
一致性 hash 算法( consistent hashing ) 张亮 consistent hashing 算法早在 1997 年就在论文 Consistent hashing and rando ...
- memcache的一致性hash算法使用
一.概述 1.我们的memcache客户端(这里我看的spymemcache的源码),使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同,只是对我们要存储数据的k ...
- 一致性Hash算法说明
本文章比较好的说明了一致性Hash算法的概念 Hash算法一般分为除模求余和一致性Hash1.除模求余:当新增.删除机器时会导致大量key的移动2.一致性Hash:当新增.删除机器时只会影响到附近的k ...
- 集群扩容的常规解决:一致性hash算法
写这篇博客是因为之前面试的一个问题:如果memcached集群需要增加机器或者减少机器,那么其他机器上的数据怎么办? 最后了解到使用一致性hash算法可以解决,下面一起来学习下吧. 声明与致谢: 本文 ...
- 一致性 hash 算法(转)
add by zhj:介绍了什么是一致性hash,以及实现一致性hash的一种算法. 原文:http://my.oschina.net/u/195065/blog/193614 目录[-] 一致性 h ...
随机推荐
- 将 Intent 序列化,像 Uri 一样传递 Intent!!!
一.真的需要new一个Intent吗? 在 Android 中,打开一个 Activity ,有多少种方式?不过不管是使用什么方式,最终都没办法逃避创建一个 Intent ,然后startActivi ...
- MSSQL查询数据分页
这几天刚好碰到数据的分页查询,觉得不错,Mark一下,方法有两种,都是使用select top,效率如何就不在这讨论 方法1:利用select top配合not in(或者not exists),查询 ...
- (转)JVM类生命周期概述:加载时机与加载过程
原文地址: http://blog.csdn.net/justloveyou_/article/details/72466105 JVM类加载机制主要包括两个问题:类加载的时机与步骤 和 类加载的方式 ...
- ionic构建APP--简单操作实现APP制作
ionic--基于AngularJS的app框架 1安装ionic .HBuilder创建APP项目,导入ionic的css,js(fonts)文件. .导入ionic.css和ionic.bundl ...
- $http设置headers来实现IE不缓存url请求的资源
var getOrders = function(){ var deferred = $q.defer(); $http({ method:'get', url:'/getOr ...
- Android进程间通信
http://www.cnblogs.com/manuosex/p/3588634.html 一.Linux系统进程间通信有哪些方式? 1.socket: 2.name pipe命名管道: 3.mes ...
- Logcat monkey命令
1. monkey命令 adb shell monkey -p com.autonavi.gxdtaojin --bugreport --ignore-crashes --ignore-timeout ...
- java如何调用接口方式二
java如何调用接口 在实际开发过程中,我们经常需要调用对方提供的接口或测试自己写的接口是否合适,所以,问题来了,java如何调用接口?很多项目都会封装规定好本身项目的接口规范,所以大多数需要去调用对 ...
- Zookeeper 笔记-应用场景
应用场景:数据发布,订阅:分布式应用配置项:分布式计数器:统一命名服务:状态同步服务:集群管理:Master选举:分布式锁:定时任务争夺:分布式队列:分布式协调通知 特点:顺序一致性,原子性,单一视图 ...
- svn: Working copy 'D:\workspace\web\..\..\images' is too old (format 10, created by Subversion 1.6
问题:SVN同步或者提交的时候出现类似错误信息: 解决:找到对应目录,删除隐藏文件.SVN 重新提交或更新