朴素贝叶斯方法是一种使用先验概率去计算后验概率的方法, 具体见ML(3): 贝叶斯方法

R包


① e1071::e1071

② klaR::klaR

参考资料:https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/Na%C3%AFve_Bayes

算法包:e1071

函数:navieBayes(formule,data,laplace=0,...,subset,na.action=na.pass)

  • Formule: 公式的形式:class~x1 + x2 + .....  相互作用是不允许的
  • data: 数据集
  • lapace: 正面双控制拉普拉期平滑。默认值(0)禁用拉普拉斯平滑。它的思想非常简单,就是对没类别下所有划分的计数为1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的局面。【在训练样本中,某一特征的属性值可能没有出现,为了保证一个属性出现次数为0时,能够得到一个很小但是非0的概率值】

R手机短信过滤示例


数据下载地址: https://github.com/stedy/Machine-Learning-with-R-datasets/tree/72e6b6cc91bc2bb08eb6f99f52c033677cb70c1a

参考:https://zhuanlan.zhihu.com/p/22615168

原理: http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_two.html

代示示例:

  • 首先,导入数据(注:第二列文本中带“...”会导制后面的数据读不进来)

    #数据导入
    sms <- read.csv("sms.csv",header=TRUE,stringsAsFactors=FALSE)
    sms$type <- factor(sms$type)
    str(sms)
    table(sms$type)
  • 数据清洗: sms$text 文本中包含着数字、缩略的短语和标点符号等,对于NaiveBayesClassifier而言,这些信息是有干扰的,因此,在建模之前需要在语料库中对数据进行清洗。
  • 添加tm包 【参见tm包使用: http://www.cnblogs.com/tgzhu/p/6680525.html】,创建语料库,如下:语料库包含5574个document
    #创建语料库
    library(NLP)
    library(tm)
    sms_corpus <- Corpus(VectorSource(sms$text)) #clear corpus
    sms_corpus <- tm_map(sms_corpus, PlainTextDocument)
    # 所有字母转换成小写
    sms_corpus <- tm_map(sms_corpus, tolower)
    # 去除text中的数字
    sms_corpus <- tm_map(sms_corpus, removeNumbers)
    # 去除停用词,例如and,or,until...
    sms_corpus <- tm_map(sms_corpus, removeWords, stopwords())
    # 去除标点符号
    sms_corpus <- tm_map(sms_corpus, removePunctuation)
    # 去除多余的空格,使单词之间只保留一个空格
    sms_corpus <- tm_map(sms_corpus, stripWhitespace)
    #查看一下清理后的语料库文本
    inspect(sms_corpus[1])
  • 标记化:将文本分解成由单个单词组成的组,实际就是实现语料库向稀疏矩阵的转变 corpus_clean -> sms_dtm,建立训练集和测试集数据
    #将文本信息转化成DocumentTermMatrix类型的稀疏矩阵
    dtm <- DocumentTermMatrix(sms_corpus)
    Sys.setlocale(category = "LC_ALL", locale = "us") #训练集和测试集数据,查看垃圾与正常邮件占比
    trainSet <- sms[1:4169,]
    testset <- sms[4170:5574,]
  • 创建可视化词云,通过词云可以大致浏览一下哪些词在spam中经常出现,哪些词在ham中经常出现。当然,前者对于垃圾短信的过滤相对重要一点。绘制词云可以通过添加包wordcloud实现  install.packages("wordcloud")
  • 为了查看spam和ham各自的多频词,首先取trainset的子集,如下:
    > #创建可视化词云,大致浏览一下哪些词在spam中经常出现
    > library(RColorBrewer)
    > library(wordcloud)
    > #取trainset对spam和ham的子集
    > spam <- subset(trainSet, type == "spam")
    > ham <- subset(trainSet, type == "ham")
    > #创建词云
    > wordcloud(spam$text, max.words=40, scale=c(3,0.5))
  • 显示结果如下:
  • 缩减特征:在面临问题是稀疏矩阵的特征太多了,而且很多词在所有text中可能都没怎么出现过,为减少运算量对特征瘦瘦身。先留下来在所有text中出现至少5次的词
    dtm_train <- dtm[1:4169,]
    > dtm_test <- dtm[4170:5574,]
    > findFreqTerms(dtm_train,5)
    [1] "available" "bugis" "cine" "crazy" "got" "great" "point" "wat"
    [9] "world" "lar" "wif" "apply" "comp" "cup" "entry" "final"
    [17] "free" "may" "receive" "text" "txt" "win" "wkly" "already"
    [25] "dun" "early" "say" "around" "goes" "nah" "think" "though"
    [33] "usf" "back" "freemsg" "fun" "hey" "like" "now" "send"
    [41] "std" "still" "weeks" "word" "xxx" "brother" "even" "speak"
    [49] "treat" "callers" "callertune" "copy" "friends" "melle" "per" "press"
    ........................
  • 将这些词设置成指示标识,下面建模时用这个指示标识提示模型只对这些词进行计算

    > #缩减特征
    > d <- findFreqTerms(dtm,5)
    > corpus_train = sms_corpus[1:4169]
    > corpus_test = sms_corpus[4170:5574]
    > dtm_train <- DocumentTermMatrix(corpus_train,list(dictionary=d))
    > dtm_test <- DocumentTermMatrix(corpus_test,list(dictionary=d))
  • train和test都是计数矩阵,如果一条text中某个单词出现2次,那么这个单词在这条文本下会被记上2,NB只想知道这个单词出现了或者没出现,因此需要对矩阵进行转化成因子矩阵。

    > #对矩阵进行转化成因子矩阵
    > convert_counts <- function(x){
    + x <- ifelse(x>0,1,0)
    + x <- factor(x, levels=c(0,1),labels=c("No","Yes"))
    + return(x)
    + }
    > dtm_train <- apply(dtm_train, MARGIN=2, convert_counts)
    > dtm_test <- apply(dtm_test, MARGIN=2, convert_counts)
  • 训练模型

    > #需要的包是e1071
    > #install.packages("e1071")
    > library(e1071)
    > sms_classifier <- naiveBayes(dtm_train,trainSet$type)
    > sms_prediction <- predict(sms_classifier, dtm_test)
    >
  • 评估模型: 用交叉表来看看test中多少预测对了

    > library(gmodels)
    > CrossTable(sms_prediction,testset$type,prop.chisq=TRUE,prop.t=FALSE, dnn=c("predicted","actual")) Cell Contents
    |-------------------------|
    | N |
    | Chi-square contribution |
    | N / Row Total |
    | N / Col Total |
    |-------------------------| Total Observations in Table: 1405 | actual
    predicted | ham | spam | Row Total |
    -------------|-----------|-----------|-----------|
    ham | 1124 | 150 | 1274 |
    | 0.229 | 1.531 | |
    | 0.882 | 0.118 | 0.907 |
    | 0.920 | 0.820 | |
    -------------|-----------|-----------|-----------|
    spam | 98 | 33 | 131 |
    | 2.229 | 14.886 | |
    | 0.748 | 0.252 | 0.093 |
    | 0.080 | 0.180 | |
    -------------|-----------|-----------|-----------|
    Column Total | 1222 | 183 | 1405 |
    | 0.870 | 0.130 | |
    -------------|-----------|-----------|-----------|
  • ham-ham和spam-spam是预测正确的,spam-ham:本身不是垃圾短信却被认为是垃圾短信过滤掉,由于Classifier1没有设置拉普拉斯估计,下面再尝试建立classifier2,看结果是否被优化。

    > #设置拉普拉斯估计
    > sms_classifier <- naiveBayes(dtm_train,trainSet$type,laplace = 1)
    > sms_prediction <- predict(sms_classifier, dtm_test)
    > CrossTable(sms_prediction,testset$type,prop.chisq=TRUE,prop.t=FALSE, dnn=c("predicted","actual")) Cell Contents
    |-------------------------|
    | N |
    | Chi-square contribution |
    | N / Row Total |
    | N / Col Total |
    |-------------------------| Total Observations in Table: 1405 | actual
    predicted | ham | spam | Row Total |
    -------------|-----------|-----------|-----------|
    ham | 1105 | 132 | 1237 |
    | 0.788 | 5.262 | |
    | 0.893 | 0.107 | 0.880 |
    | 0.904 | 0.721 | |
    -------------|-----------|-----------|-----------|
    spam | 117 | 51 | 168 |
    | 5.803 | 38.747 | |
    | 0.696 | 0.304 | 0.120 |
    | 0.096 | 0.279 | |
    -------------|-----------|-----------|-----------|
    Column Total | 1222 | 183 | 1405 |
    | 0.870 | 0.130 | |
    -------------|-----------|-----------|-----------|
  • spam人预测结果有改进,尝试继续优化,下一步以评论分类进行中文分类模拟

 iris分类预测


  • 安装加载包

    #安装加载e1071
    #install.packages("e1071")
    library(e1071)
  • iris数据集分为训练集和测试集
    index <-sample(1:nrow(iris), 100)
    iris.train <-iris[index, ]
    iris.test <-iris[-index, ]
  • 利用朴素贝叶斯算法构建模型
    model.NaiveBayes <-naiveBayes(x =subset(iris.train,select=-Species), y= iris.train$Species)
    str(model.NaiveBayes)
    summary(model.NaiveBayes)
  • 用模型对测试集做测试

    > results.NaiveBayes <-predict(object = model.NaiveBayes, newdata =iris.test, type="class")
    > table(results.NaiveBayes, iris.test$Species) results.NaiveBayes setosa versicolor virginica
    setosa 14 0 0
    versicolor 0 17 2
    virginica 0 1 16

ML(4): NavieBayes在R中的应用的更多相关文章

  1. R中一切都是vector

    0.可以说R语言中一切结构体的基础是vector! R中一切都是vector,vecotor的每个component必须类型一致(character,numeric,integer....)!vect ...

  2. 简单介绍一下R中的几种统计分布及常用模型

    统计学上分布有很多,在R中基本都有描述.因能力有限,我们就挑选几个常用的.比较重要的简单介绍一下每种分布的定义,公式,以及在R中的展示. 统计分布每一种分布有四个函数:d――density(密度函数) ...

  3. R中的par()函数的参数

    把R中par()函数的主要参数整理了一下(另外本来还整理了每个参数的帮助文档中文解释,但是太长,就分类之后,整理为图表,excel不便放上来,就放了这些表的截图)

  4. 关于R中的mode()和class()的区别

    本文原创,转载请注明出处,本人Q1273314690(交流学习) 说明:本文曾经在15年11月在CSDN发过,但是由于CSDN不支持为知笔记的发布为博客的API功能,所以,自今天起,转移到博客园(幸好 ...

  5. R中的name命名系列函数总结

    本文原创,转载请注明出处,本人Q1273314690 R中关于给行列赋名称的函数有 dimnames,names,rowname,colname,row.names 这五个函数,初学的时候往往分不清楚 ...

  6. 总结——R中查看属性的函数

    本文原创,转载注明出处,本人Q1273314690 R中知道一个变量的主要内容和结构,对我们编写代码是很重要的,也可以帮我们避免很多错误. 但是,R中有好几个关于属性查看的函数,我们往往不知道什么时候 ...

  7. R中创建not-yet-evaluated对象

    create not-yet-evaluated object在R中创建 not-yet-evaluated(就是some code we will evaluated later!!)对象;然后执行 ...

  8. R中,去掉dataframe中的NA行

    R中使用complete.cases 和 na.omit来去掉包含NA的行 现在有个一data.frame  datafile如下所示 Date        sulfate nitrate ID 1 ...

  9. 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法

    对于样本数据的散点图形如函数y=ax2+bx+c的图像的数据, 在python中的拟合过程为: ##最小二乘法 import numpy as np import scipy as sp import ...

随机推荐

  1. 【数据标识】iOS App下载渠道的统计需求

    需求概述 我们现在有一个需求,某一个活动需要拉新所谓的拉新一般是推App下载,这个用户通过这个活动下载了App后,我们需要做到[在数据库中记录这个用户下载这个App是通过那个二维码渠道的,从效果上说, ...

  2. 关于Android App开发技术分类的一个小总结

     前言 本文从热更新.异步并发.性能优化.网络请求等多个方面对Android App开发的技术进行了一个分类总结.欢迎大家沟通交流. 热更新 [原]热更新开源项目Tinker源码解析之Dex热更新 [ ...

  3. 《深入理解Java虚拟机》学习笔记之最后总结

    编译器 Java是编译型语言,按照编译的时期不同,编译器可分为: 前端编译器:其实叫编译器的前端更合适些,它把*.java文件转变成*.class文件,如Sun的Javac.Eclipse JDT中的 ...

  4. Java日志工具之Log4J

    Log4J与java.util.logging.Logger的使用方式出奇的相似,因此如果先看这篇文章<Java日志工具之java.util.logging.Logger>在来用Log4J ...

  5. Cocos2d-x shader学习2: 模糊(Blur)

    模糊效果在游戏中经常会用到,有的为了突出前景会把背景给模糊化,有的是因为一些技能需要模糊效果.模糊是shader中较为简单的一种应用.cocos2dx 3.x给的demo中,就有sprite的模糊的效 ...

  6. [LeetCode]House Robber II (二次dp)

    213. House Robber II     Total Accepted: 24216 Total Submissions: 80632 Difficulty: Medium Note: Thi ...

  7. lucene倒排索引缓冲池的细节

    倒排索引要存哪些信息   提到倒排索引,第一感觉是词到文档列表的映射,实际上,倒排索引需要存储的信息不止词和文档列表.为了使用余弦相似度计算搜索词和文档的相似度,需要计算文档中每个词的TF-IDF值, ...

  8. Python--校园网爬虫记

    查成绩,算分数,每年的综合测评都是个固定的过程,作为软件开发者,这些过程当然可以交给代码去做,通过脚本进行网络请求获取数据,然后直接进行计算得到基础分直接填表就好了,查成绩再手动计算既容易出错也繁琐, ...

  9. SQL-ROW_NUMBER() OVER函数的基本用法(源码案例)

    SELECT SUM(t.AdjustedBalance) AS Allqmye FROM ( SELECT * FROM ( SELECT ROW_NUMBER() OVER ( PARTITION ...

  10. TSQL语句和CRUD(20161016)

    上午 TSQL语句 1.创建数据库 create database test2; 2.删除数据库 drop database test2; 3.创建表 create table ceshi ( ids ...