科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“;

现在看来,此前的八层功力都为这第九层作基础;

本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能队伍。

9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process
8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders
7. [Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution
6. [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models
5. [Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables
4. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference
3. [Bayesian] “我是bayesian我怕谁”系列 - Latent Variables
2. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference
1. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior

小喇叭本系列文章乃自娱自乐,延缓脑细胞衰老;只“雪中送炭”,不提供”全套服务“。


九阳神功第九章《Gaussian Processes for ML》

如果,非统计机器学习是入门,统计机器学习是进阶,那么“高斯过程”就算是机器学习的高级阶段,能发paper。

国内相关的书,没发现。(有数学系的同学给推荐么?)

推荐相关的还算易懂的paper一篇: Generic Inference in Latent Gaussian Process Models

对高斯过程的了解过程中,让我深刻的明白,要发国际paper的同学都有着怎样的学习生涯套路。

菜鸡们来瞧瞧这位,Stanford cs231n 2016的lecturer,语速感人,成就经典。

血统纯正的学习路线:

2011-2015: Stanford Computer Science Ph.D. student Deep Learning, Computer Vision, Natural Language Processing. Adviser: Fei-Fei Li. 
Summer 2011: Google Research Internship Large-Scale Unsupervised Deep Learning for Videos 
2009-2011: University of British Columbia: MSc Learning Controllers for Physically-simulated Figures. Adviser: Michiel van de Panne 
2005-2009: University of Toronto: BSc Double major in Computer Science and Physics

请注意本科时期的double major,which帮助奠定大牛潜质。

学纯数搞人工智能有点纸上谈兵;

学计科高人工智能有点后劲不足;

CS+Physics真乃绝配!

言归正传,基本上学习的路线是:GP for Regression, GP for Classification, Latent Gaussian Process Models

百度到的东西基本都是GP for Regression,可见广大吃瓜群众基本停留在这套路线的初级阶段,后两者确实需要功力,即使一知半解也不便卖弄风骚。

此处一篇:浅谈高斯过程回归 应该是根据youtube视频课程所总结,写得挺好。在此基础上我将在此加一点补充,希望有助理解。

本来想把自己懂的这么一点东西总结于此,但最近release了一门神课,很对味,故正在重点follow中。


高斯过程回归

  • 预测

这篇浅谈高斯过程回归已经将(预测)基本计算过程展现了一遍,这里就不再赘述。读完该链接后,抛出一个问题:

蓝色字体的协方差值是如何给出的?怎么定义会更好?

  • 模型的选择

f是高斯,y也是高斯。根据二元高斯的条件分布计算方法:[Bayes] Why we prefer Gaussian Distribution

直接求得p(f*|y) 【等价 p(f*|X, y, x*)】的预测公式如下:

常见的结论就是:这个预测结果(期望)是个“输入的线性组合”,同时也是个“kernel的线性组合”。

以下求y的边缘分布:【过程略,较复杂】

常见的结论就是:这个能用于hyperparameter learning,也就是θ = {sigma, C}的学习,如下所示。

其实就是相关性的选择问题,学习这个K内部的东西。为何要计较这三部分?

想必也是个“权衡问题”,如下图。

From: http://www.gaussianprocess.org/gpml/chapters/RW5.pdf

适当的选择超参,能获得一个极大的marginal likelood。

这也叫做“model selection”。

高斯过程分类

参考“回归”,学习“分类”。

没有了噪声sigma的概念,f(y|f)变为了sigmoid,故成了non-linear,p(f|X,y)成了恼人的non-gaussian。

那我们就定一个高斯q(f|X,y)来近似p(f|X,y);自然而然引出Laplace Approximation【暂略】。

一个思考的技巧:

计算时可以暂且将f作为回归中y的角色,那么如下看去就将对应的回归结论中的噪声sigma去掉即可。

但我们终究还是要p(f*|X, y, x*),也就是需要加入一个“f given y的关系”,即是上述提及的近似高斯技巧。

与“回归”对比,是否感觉总有点复杂?为什么搞复杂了呢?

  • 同样的已知:p(y|f), p(f|x) 但前者已不是高斯。怎么办?
  • 那就暂且不管y,计算还是高斯的这部分,也就是截止到f的地方,这样也就自然的利用了回归时的结论如上,得到了p(f*|X,x*,f)
  • 然后,再考虑f-->y已不再是高斯的问题,便自然地引入了p(f|X,y) <-- p(y|f), p(f|x)。

计算结果如下:

p(f*|X,y,x*) = N(f*| K(x*)TK-1b, K(x*,x*)-K(x*)T[K-1-K-1ΣK-1]K(x*))
  • 预测

接下来就是“预测”问题,通常有两种策略:Average and MAP

可见虽然求出了f*,但依然无法逃避“f* --> y*”这段non-gaussian的过程。

此时,便自然而然得想到用mcmc去估计积分结果。

高斯过程隐变量

这一部分是超高级内容,只是简单聊一聊,仰望一下。

想想PCA,隐变量的意义是压缩,这里将要说的隐变量,也就是inducing variables也是如此。

要计算这个东西,是O(N3),所以有必要想办法减小计算量。

可采用decomposition的方法,例如使用inducing variables:u

以上便是原因之一。下图中的f之间用粗线表示“f之间是全连接”。

原理详见原论文(上图标题),如下来个例子瞧瞧。

至少我们知道有了u,z这样的概念,而且维度比N要低很多。

在Subset of Regressors (SR) approximation中,假设了covariance function:

与标准GP相比,看上去精简了“相关性”的计算。将上式替代到标准GP回归时的结论即可得到如下:

计算过程较复杂,其中会涉及到如下这个公式的运用 from Maxtrix Cookbook:

就到这里,因为inducing variables的引入,展开了一大片坑,可以阅读该链接深入了解:Generic Inference in Latent Gaussian Process Models

本篇写得相当基础, 大致写个学习进阶套路,一来确实需要相当的数学功底,二来更想花时间follow (STATS 385)

再次强调下,本系列不提供“全套服务”,只帮助整理下个人近期的知识体系,如有兴趣,请点击文章中提及的各个亲测的高质量链接。

那么,就到这里吧。

相关链接:

Ref: http://www.cnblogs.com/hxsyl/p/5229746.html

Ref: https://zhuanlan.zhihu.com/p/24388992

Link: http://videolectures.net/gpip06_mackay_gpb/

GP效果:Classifier comparison

[Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process的更多相关文章

  1. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders

    本是neural network的内容,但偏偏有个variational打头,那就聊聊.涉及的内容可能比较杂,但终归会 end with VAE. 各个概念的详细解释请点击推荐的链接,本文只是重在理清 ...

  2. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences

    要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...

  3. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference

    涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...

  4. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference

    要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...

  5. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  6. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  7. [Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables

    打开prml and mlapp发现这部分目录编排有点小不同,但神奇的是章节序号竟然都为“十二”. prml:pca --> ppca --> fa mlapp:fa --> pca ...

  8. [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models

    循序渐进的学习步骤是: Markov Chain --> Hidden Markov Chain --> Kalman Filter --> Particle Filter Mark ...

  9. [Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution

    使用Boltzmann distribution还是Gibbs distribution作为题目纠结了一阵子,选择前者可能只是因为听起来“高大上”一些.本章将会聊一些关于信息.能量这方面的东西,体会“ ...

随机推荐

  1. JavaWeb(三)JSP之3个指令、6个动作、9个内置对象和4大作用域

    前言 前面大概介绍了什么是JSP,今天我给大家介绍一下JSP的三个指令.6个动作以及它的9大内置对象.接下来我们就直接进入正题 一.JSP的3个指令 JSP指令(directive)是为JSP引擎而设 ...

  2. 【转】NAS 黑群晖 配置完成(不含硬盘),NAS能做什么?

    在配黑群晖前,240元入手过一个艾美佳的NAS感受了下,功能倒还合适,就是配置太老,厂家固件也停止更新了,一直不太满意. 后来经常关注NAS1,发现现在X86的NAS也很好自己DIY了,就长草了,向女 ...

  3. HDU 1219 AC Me

    strlen能不用就不用 #include<cstdio> #include<cstdlib> #include<iostream> #include<alg ...

  4. Java面向对象 Object类 内部类

     Java面向对象 Object类    内部类 知识概要:                 一:Object类                 二:内部类 匿名内部类的写法 1.Object O ...

  5. c# gdi+输出成不同mime类型的图片

    /// <summary> /// 通过图片的mime类型得到相应的编码器 /// </summary> /// <param name="mimeType&q ...

  6. Bash : test 命令

    在 Bash 脚本中我们一般会使用 test 命令来进行条件检查.test 命令的返回值为 0 或 1.0 表示 true, 1 表示 false.简单起见,我们可以直接认为 test 的结果为 tr ...

  7. python3.6安装Scrapy

    环境:win10(64位), Python3.6(64位) 1.安装pyhthon 这个就不多说了,对应版本就下载对应的依赖包 2.安装pywin32 在windows下,必须安装pywin32,安装 ...

  8. python3.6安装pyspider

    win10下安装pyspider 1.pip 我在安装pip的时候默认安装了Pip. 如果没有的话:pip安装 2.PhantomJS PhantomJS 是一个基于 WebKit 的服务器端 Jav ...

  9. PE格式第六讲,导出表

    PE格式第六讲,导出表 请注意,下方字数比较多,其实结构挺简单,但是你如果把博客内容弄明白了,对你受益匪浅,千万不要看到字数多就懵了,其实字数多代表它重要.特别是第五步, 各种表中之间的关系. 作者: ...

  10. Java 内存模型- Java Memory Model

    多线程越来越多的使用,使得我们需要对它的深入理解.那么就涉及到了Java内存模型JMM.JMM是JVM的一部分,JMM定义了一个线程修改了一个共享变量,其他线程什么时候或者如何看到这个变量,如何去访问 ...