正则化项本质上是一种先验信息,整个最优化问题从贝叶斯观点来看是一种贝叶斯最大后验估计,其中正则化项对应后验估计中的先验信息,损失函数对应后验估计中的似然函数,两者的乘积即对应贝叶斯最大后验估计的形式,如果你将这个贝叶斯最大后验估计的形式取对数,即进行极大似然估计,你就会发现问题立马变成了损失函数+正则化项的最优化问题形式。

  

  在原始的代价函数后面加上一个L1正则化项,即所有权重w的绝对值的和,乘以λ/n:

  比原始的更新规则多出了η * λ * sgn(w)/n这一项。当w为正时,更新后的w变小。当w为负时,更新后的w变大——因此它的效果就是让w往0靠,使网络中的权重尽可能为0,也就相当于减小了网络复杂度,防止过拟合。当w为0时怎么办?当w等于0时,|W|是不可导的,所以我们只能按照原始的未经正则化的方法去更新w,这就相当于去掉η*λ*sgn(w)/n这一项,所以可以规定sgn(0)=0,这样就把w=0的情况也统一进来了。(在编程的时候,令sgn(0)=0,sgn(w>0)=1,sgn(w<0)=-1)

  

L1正则化的更多相关文章

  1. L1正则化及其推导

    \(L1\)正则化及其推导 在机器学习的Loss函数中,通常会添加一些正则化(正则化与一些贝叶斯先验本质上是一致的,比如\(L2\)正则化与高斯先验是一致的.\(L1\)正则化与拉普拉斯先验是一致的等 ...

  2. Laplace(拉普拉斯)先验与L1正则化

    Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝 ...

  3. 【深度学习】L1正则化和L2正则化

    在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...

  4. L1正则化比L2正则化更易获得稀疏解的原因

    我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...

  5. L2与L1正则化理解

    https://www.zhihu.com/question/37096933/answer/70507353 https://blog.csdn.net/red_stone1/article/det ...

  6. L1正则化和L2正则化

    L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...

  7. L1正则化与L2正则化的理解

    1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...

  8. 正则化--L1正则化(稀疏性正则化)

    稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的 ...

  9. LASSO回归与L1正则化 西瓜书

    LASSO回归与L1正则化 西瓜书 2018年04月23日 19:29:57 BIT_666 阅读数 2968更多 分类专栏: 机器学习 机器学习数学原理 西瓜书   版权声明:本文为博主原创文章,遵 ...

随机推荐

  1. centos7.3使用花生壳映射端口

    首先下载花生壳客户端(其实我觉得更应该叫做服务端),选择相应的版本就可,例如我就是选择的linux->centos版本的 https://hsk.oray.com/download/ 我的版本为 ...

  2. AspNet Core Api Restful +Swagger 发布IIS

    上一步我们创建好CoreApi 接下来在框架中加入 Swagger  并发布  到 IIS (1)首先点击依赖项>管理Nuget包 (2)输入 Swashbuckle.aspnetCore  比 ...

  3. for in和for of

  4. Odoo 开源协议讨论

    Odoo 开源协议讨论 Odoo 9 开始使用的 LGPL 开源协议,所以模块的加密并不会违反 Odoo 的开源协议. 如果使用 Odoo 8 (含)以前的版本开发模块,那么你在分发模块时也必须给使用 ...

  5. Mysql主从同步问题汇总

    data-1-1主机是master,data-1-2是slave Last_IO_Errno: 1236 slave查看show slave status\G; 显示Last_IO_Errno: 12 ...

  6. ML(6)——改进机器学习算法

    现在我们要预测的是未来的房价,假设选择了回归模型,使用的损失函数是: 通过梯度下降或其它方法训练出了模型函数hθ(x),当使用hθ(x)预测新数据时,发现准确率非常低,此时如何处理? 在前面的章节中我 ...

  7. css加载字体跨域问题

    刚才碰到一个css加载字体跨域问题,记录一下.站点的动态请求与静态文件请求是不同的域名的.站点的域名为 www.domain.com,而静态文件的域名为 st.domain.com.问题:页面中加载c ...

  8. golang gorilla websocket例子

    WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信--允许服务器主动发送信息给客户端. WebSocket通信协议于2011年被IETF定 ...

  9. 大数据时代——为什么用HADOOP?

    转载自:http://www.daniubiji.cn/archives/538 什么叫大数据 “大”,说的并不仅是数据的“多”!不能用数据到了多少TB ,多少PB 来说. 对于大数据,可以用四个词来 ...

  10. WINSCP传输文件自动赋予777权限

    WinSCP WinSCP是一个Windows环境下使用SSH的开源图形化SFTP客户端.同时支持SCP协议.它的主要功能就是在本地与远程计算机间安全的复制文件. 为了复制到Linux的文件具有777 ...