JAVA NIO non-blocking模式实现高并发服务器(转)
原文链接:JAVA NIO non-blocking模式实现高并发服务器
Java自1.4以后,加入了新IO特性,NIO. 号称new IO. NIO带来了non-blocking特性. 这篇文章主要讲的是如何使用NIO的网络新特性,来构建高性能非阻塞并发服务器.
文章基于个人理解,我也来搞搞NIO.,求指正.
在NIO之前
服务器还是在使用阻塞式的java socket. 以Tomcat最新版本没有开启NIO模式的源码为例, tomcat会accept出来一个socket连接,然后调用processSocket方法来处理socket.
while(true) {
....
Socket socket = null;
try {
// Accept the next incoming connection from the server
// socket
socket = serverSocketFactory.acceptSocket(serverSocket);
}
...
...
// Configure the socket
if (running && !paused && setSocketOptions(socket)) {
// Hand this socket off to an appropriate processor
if (!processSocket(socket)) {
countDownConnection();
// Close socket right away(socket);
closeSocket(socket);
}
}
....
}
使用ServerSocket.accept()方法来创建一个连接. accept方法是阻塞方法,在下一个connection进来之前,accept会阻塞.
在一个socket进来之后,Tomcat会在thread pool里面拿出一个thread来处理连接的socket. 然后自己快速的脱身去接受下一个socket连接. 代码如下:
protected boolean processSocket(Socket socket) {
// Process the request from this socket
try {
SocketWrapper<Socket> wrapper = new SocketWrapper<Socket>(socket);
wrapper.setKeepAliveLeft(getMaxKeepAliveRequests());
// During shutdown, executor may be null - avoid NPE
if (!running) {
return false;
}
getExecutor().execute(new SocketProcessor(wrapper));
} catch (RejectedExecutionException x) {
log.warn("Socket processing request was rejected for:"+socket,x);
return false;
} catch (Throwable t) {
ExceptionUtils.handleThrowable(t);
// This means we got an OOM or similar creating a thread, or that
// the pool and its queue are full
log.error(sm.getString("endpoint.process.fail"), t);
return false;
}
return true;
}
而每个处理socket的线程,也总是会阻塞在while(true) sockek.getInputStream().read() 方法上.
总结就是, 一个socket必须使用一个线程来处理. 致使服务器需要维护比较多的线程. 线程本身就是一个消耗资源的东西,并且每个处理socket的线程都会阻塞在read方法上,使得系统大量资源被浪费.
以上这种socket的服务方式适用于HTTP服务器,每个http请求都是短期的,无状态的,并且http后台的业务逻辑也一般比较复杂. 使用多线程和阻塞方式是合适的.
倘若是做游戏服务器,尤其是CS架构的游戏.这种传统模式服务器毫无胜算.游戏有以下几个特点是传统服务器不能胜任的:
1, 持久TCP连接. 每一个client和server之间都存在一个持久的连接.当CCU(并发用户数量)上升,阻塞式服务器无法为每一个连接运行一个线程.
2, 自己开发的二进制流传输协议. 游戏服务器讲究响应快.那网络传输也要节省时间. HTTP协议的冗余内容太多,一个好的游戏服务器传输协议,可以使得message压缩到3-6倍甚至以上.这就使得游戏服务器要开发自己的协议解析器.
3, 传输双向,且消息传输频率高.假设一个游戏服务器instance连接了2000个client,每个client平均每秒钟传输1-10个message,一个message大约几百字节或者几千字节.而server也需要向client广播其他玩家的当前信息.这使得服务器需要有高速处理消息的能力.
4, CS架构的游戏服务器端的逻辑并不像APP服务器端的逻辑那么复杂. 网络游戏在client端处理了大部分逻辑,server端负责简单逻辑,甚至只是传递消息.
在Java NIO出现以后
出现了使用NIO写的非阻塞网络引擎,比如Apache Mina, JBoss Netty, Smartfoxserver BitSwarm. 比较起来, Mina的性能不如后两者.Tomcat也存在NIO模式,不过需要人工开启.
首先要说明一下, 与App Server的servlet开发模式不一样, 在Mina, Netty和BitSwarm上开发应用程序都是Event Driven的设计模式.Server端会收到Client端的event,Client也会收到Server端的event,Server端与Client端的都要注册各种event的EventHandler来handle event.
用大白话来解释NIO:
1, Buffers, 网络传输字节存放的地方.无论是从channel中取,还是向channel中写,都必须以Buffers作为中间存贮格式.
2, Socket Channels. Channel是网络连接和buffer之间的数据通道.每个连接一个channel.就像之前的socket的stream一样.
3, Selector. 像一个巡警,在一个片区里面不停的巡逻. 一旦发现事件发生,立刻将事件select出来.不过这些事件必须是提前注册在selector上的. select出来的事件打包成SelectionKey.里面包含了事件的发生事件,地点,人物. 如果警察不巡逻,每个街道(socket)分配一个警察(thread),那么一个片区有几条街道,就需要几个警察.但现在警察巡逻了,一个巡警(selector)可以管理所有的片区里面的街道(socketchannel).
以上把警察比作线程,街道比作socket或socketchannel,街道上发生的一切比作stream.把巡警比作selector,引起巡警注意的事件比作selectionKey.
从上可以看出,使用NIO可以使用一个线程,就能维护多个持久TCP连接.
NIO实例
下面给出NIO编写的EchoServer和Client. Client连接server以后,将发送一条消息给server. Server会原封不懂的把消息发送回来.Client再把消息发送回去.Server再发回来.用不休止. 在性能的允许下,Client可以启动任意多.
以下Code涵盖了NIO里面最常用的方法和连接断开诊断.注释也全.
首先是Server的实现. Server端启动了2个线程,connectionBell线程用于巡逻新的连接事件. readBell线程用于读取所有channel的数据. 注解: Mina采取了同样的做法,只是readBell线程启动的个数等于处理器个数+1. 由此可见,NIO只需要少量的几个线程就可以维持非常多的并发持久连接.
每当事件发生,会调用dispatch方法去处理event. 一般情况,会使用一个ThreadPool来处理event. ThreadPool的大小可以自定义.但不是越大越好.如果处理event的逻辑比较复杂,比如需要额外网络连接或者复杂数据库查询,那ThreadPool就需要稍微大些.(猜测)Smartfoxserver处理上万的并发,也只用到了3-4个线程来dispatch event.
EchoServer
public class EchoServer {
public static SelectorLoop connectionBell;
public static SelectorLoop readBell;
public boolean isReadBellRunning=false; public static void main(String[] args) throws IOException {
new EchoServer().startServer();
} // 启动服务器
public void startServer() throws IOException {
// 准备好一个闹钟.当有链接进来的时候响.
connectionBell = new SelectorLoop(); // 准备好一个闹装,当有read事件进来的时候响.
readBell = new SelectorLoop(); // 开启一个server channel来监听
ServerSocketChannel ssc = ServerSocketChannel.open();
// 开启非阻塞模式
ssc.configureBlocking(false); ServerSocket socket = ssc.socket();
socket.bind(new InetSocketAddress("localhost",7878)); // 给闹钟规定好要监听报告的事件,这个闹钟只监听新连接事件.
ssc.register(connectionBell.getSelector(), SelectionKey.OP_ACCEPT);
new Thread(connectionBell).start();
} // Selector轮询线程类
public class SelectorLoop implements Runnable {
private Selector selector;
private ByteBuffer temp = ByteBuffer.allocate(1024); public SelectorLoop() throws IOException {
this.selector = Selector.open();
} public Selector getSelector() {
return this.selector;
} @Override
public void run() {
while(true) {
try {
// 阻塞,只有当至少一个注册的事件发生的时候才会继续.
this.selector.select(); Set<SelectionKey> selectKeys = this.selector.selectedKeys();
Iterator<SelectionKey> it = selectKeys.iterator();
while (it.hasNext()) {
SelectionKey key = it.next();
it.remove();
// 处理事件. 可以用多线程来处理.
this.dispatch(key);
}
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} public void dispatch(SelectionKey key) throws IOException, InterruptedException {
if (key.isAcceptable()) {
// 这是一个connection accept事件, 并且这个事件是注册在serversocketchannel上的.
ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
// 接受一个连接.
SocketChannel sc = ssc.accept(); // 对新的连接的channel注册read事件. 使用readBell闹钟.
sc.configureBlocking(false);
sc.register(readBell.getSelector(), SelectionKey.OP_READ); // 如果读取线程还没有启动,那就启动一个读取线程.
synchronized(EchoServer.this) {
if (!EchoServer.this.isReadBellRunning) {
EchoServer.this.isReadBellRunning = true;
new Thread(readBell).start();
}
} } else if (key.isReadable()) {
// 这是一个read事件,并且这个事件是注册在socketchannel上的.
SocketChannel sc = (SocketChannel) key.channel();
// 写数据到buffer
int count = sc.read(temp);
if (count < 0) {
// 客户端已经断开连接.
key.cancel();
sc.close();
return;
}
// 切换buffer到读状态,内部指针归位.
temp.flip();
String msg = Charset.forName("UTF-8").decode(temp).toString();
System.out.println("Server received ["+msg+"] from client address:" + sc.getRemoteAddress()); Thread.sleep(1000);
// echo back.
sc.write(ByteBuffer.wrap(msg.getBytes(Charset.forName("UTF-8")))); // 清空buffer
temp.clear();
}
} } }
接下来就是Client的实现.Client可以用传统IO,也可以使用NIO.这个例子使用的NIO,单线程.
public class Client implements Runnable {
// 空闲计数器,如果空闲超过10次,将检测server是否中断连接.
private static int idleCounter = 0;
private Selector selector;
private SocketChannel socketChannel;
private ByteBuffer temp = ByteBuffer.allocate(1024); public static void main(String[] args) throws IOException {
Client client= new Client();
new Thread(client).start();
//client.sendFirstMsg();
} public Client() throws IOException {
// 同样的,注册闹钟.
this.selector = Selector.open(); // 连接远程server
socketChannel = SocketChannel.open();
// 如果快速的建立了连接,返回true.如果没有建立,则返回false,并在连接后出发Connect事件.
Boolean isConnected = socketChannel.connect(new InetSocketAddress("localhost", 7878));
socketChannel.configureBlocking(false);
SelectionKey key = socketChannel.register(selector, SelectionKey.OP_READ); if (isConnected) {
this.sendFirstMsg();
} else {
// 如果连接还在尝试中,则注册connect事件的监听. connect成功以后会出发connect事件.
key.interestOps(SelectionKey.OP_CONNECT);
}
} public void sendFirstMsg() throws IOException {
String msg = "Hello NIO.";
socketChannel.write(ByteBuffer.wrap(msg.getBytes(Charset.forName("UTF-8"))));
} @Override
public void run() {
while (true) {
try {
// 阻塞,等待事件发生,或者1秒超时. num为发生事件的数量.
int num = this.selector.select(1000);
if (num ==0) {
idleCounter ++;
if(idleCounter >10) {
// 如果server断开了连接,发送消息将失败.
try {
this.sendFirstMsg();
} catch(ClosedChannelException e) {
e.printStackTrace();
this.socketChannel.close();
return;
}
}
continue;
} else {
idleCounter = 0;
}
Set<SelectionKey> keys = this.selector.selectedKeys();
Iterator<SelectionKey> it = keys.iterator();
while (it.hasNext()) {
SelectionKey key = it.next();
it.remove();
if (key.isConnectable()) {
// socket connected
SocketChannel sc = (SocketChannel)key.channel();
if (sc.isConnectionPending()) {
sc.finishConnect();
}
// send first message;
this.sendFirstMsg();
}
if (key.isReadable()) {
// msg received.
SocketChannel sc = (SocketChannel)key.channel();
this.temp = ByteBuffer.allocate(1024);
int count = sc.read(temp);
if (count<0) {
sc.close();
continue;
}
// 切换buffer到读状态,内部指针归位.
temp.flip();
String msg = Charset.forName("UTF-8").decode(temp).toString();
System.out.println("Client received ["+msg+"] from server address:" + sc.getRemoteAddress()); Thread.sleep(1000);
// echo back.
sc.write(ByteBuffer.wrap(msg.getBytes(Charset.forName("UTF-8")))); // 清空buffer
temp.clear();
}
}
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} }
下载以后粘贴到eclipse中, 先运行EchoServer,然后可以运行任意多的Client. 停止Server和client的方式就是直接terminate server.
JAVA NIO non-blocking模式实现高并发服务器(转)的更多相关文章
- JAVA NIO non-blocking模式实现高并发服务器
JAVA NIO non-blocking模式实现高并发服务器 分类: JAVA NIO2014-04-14 11:12 1912人阅读 评论(0) 收藏 举报 目录(?)[+] Java自1.4以后 ...
- JAVA NIO使用非阻塞模式实现高并发服务器
参考:http://blog.csdn.net/zmx729618/article/details/51860699 https://zhuanlan.zhihu.com/p/23488863 ht ...
- 多线程模式下高并发的环境中唯一确保单例模式---DLC双端锁
DLC双端锁,CAS,ABA问题 一.什么是DLC双端锁?有什么用处? 为了解决在多线程模式下,高并发的环境中,唯一确保单例模式只能生成一个实例 多线程环境中,单例模式会因为指令重排和线程竞争的原因会 ...
- 深入理解Java虚拟机-如何利用VisualVM对高并发项目进行性能分析
前面在学习JVM的知识的时候,一般都需要利用相关参数进行分析,而分析一般都需要用到一些分析的工具,因为一般使用IDEA,而VisualVM对于IDEA也不错,所以就选择VisualVM来分析JVM性能 ...
- Linux + C + Epoll实现高并发服务器(线程池 + 数据库连接池)(转)
转自:http://blog.csdn.net/wuyuxing24/article/details/48758927 一, 背景 先说下我要实现的功能,server端一直在linux平台下面跑,当客 ...
- 第15章 高并发服务器编程(1)_非阻塞I/O模型
1. 高性能I/O (1)通常,recv函数没有数据可用时会阻塞等待.同样,当socket发送缓冲区没有足够多空间来发送消息时,函数send会阻塞. (2)当socket在非阻塞模式下,这些函数不会阻 ...
- 为一个支持GPRS的硬件设备搭建一台高并发服务器用什么开发比较容易?
高并发服务器开发,硬件socket发送数据至服务器,服务器对数据进行判断,需要实现心跳以保持长连接. 同时还要接收另外一台服务器的消支付成功消息,接收到消息后控制硬件执行操作. 查了一些资料,java ...
- linux学习之高并发服务器篇(二)
高并发服务器 1.线程池并发服务器 两种模型: 预先创建阻塞于accept多线程,使用互斥锁上锁保护accept(减少了每次创建线程的开销) 预先创建多线程,由主线程调用accept 线程池 3.多路 ...
- PHP写的异步高并发服务器,基于libevent
PHP写的异步高并发服务器,基于libevent 博客分类: PHP PHPFPSocketLinuxQQ 本文章于2013年11月修改. swoole已使用C重写作为PHP扩展来运行.项目地址:h ...
随机推荐
- 关于Sublime text3 配置及插件整理
Package Control组件在线安装 按Ctrl+`调出console(注:避免热键冲突) 粘贴以下代码到命令行并回车: import urllib.request,os; pf = 'Pack ...
- https://maven.google.com 连接不上的解决办法(转)
版权声明:本文为博主原创文章,未经博主允许请火速转载. https://blog.csdn.net/a06_kassadin/article/details/72796696 Update 今天看了 ...
- 浅谈Spring的AOP实现-代理机制
说起Spring的AOP(Aspect-Oriented Programming)面向切面编程大家都很熟悉(Spring不是这次博文的重点),但是我先提出几个问题,看看同学们是否了解,如果了解的话可以 ...
- rsync基础
参考资料:骏马金龙的rsync系列.该博主的博文质量很好,推荐大家关注. 环境 操作系统:CentOS Linux release 7.5.1804 (Core) 软件:rsync version ...
- rabbitmq学习(四) —— 发布订阅
为了说明这种模式,我们将建立一个简单的日志系统.这个系统将由两个程序组成,第一个将发出日志消息,第二个将接收并处理日志消息.在我们的日志系统中,每一个运行的接收程序的副本都会收到日志消息. 交换器(E ...
- 【Ray Tracing in One Weekend 超详解】 光线追踪1-8 自定义相机设计
今天,我们来学习如何设计自定义位置的相机 ready 我们只需要了解我们之前的坐标体系,或者说是相机位置 先看效果 Chapter10:Positionable camera 这一章我们直接用概念 ...
- Oracle中append与Nologging
快速向表中插入大量数据Oracle中append与Nologging 2017-05-05 / VIEWS: 304 来源于:http://blog.sina.com.cn/s/blog_61cd89 ...
- 洛谷.4721.[模板]分治FFT(NTT)
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...
- HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...
- 给第三方dll强签名
假若我们要对第三方控件或者是其他的没有源代码的DLL文件想做类似的处理,增加强名称签名,怎么处理,是很多人都会面对的问题. 步骤: 1.首先采用反汇编工具ildasm生成中间语言. ildas ...