hdu 4704 Sum 【费马小定理】
题意:将N拆分成1-n个数,问有多少种组成方法。
例如:N=4,将N拆分成1个数,结果就是4;将N拆分成2个数,结果就是3(即:1+3,2+2,3+1)……1+3和3+1这个算两个,则这个就是组合数问题。
根据隔板定理,把N分成一份的分法数为C(1,n-1),
把N分成两份的分法数为C(2,n-1),
把N分成三份的分法数为C(3,n-1),.... ,
把N分成N份的分法数为C(n-1,n-1)。
即我们要求的结果为: 2^(n-1)% mod 但是 [ 1<=n<1e5, mod=1e9+7 ]
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
LL pow(LL a,LL b)
{
LL res = 1,base = a;
while(b!=0){
if(b&1) res = res*base %mod;
base = base * base%mod;
b>>=1;
}
return res;
}
int main()
{
LL num=0,ans;
string str;
while(cin>>str){
num = 0;
for(LL i=0;i<str.size();i++){
num=(num*10 + str[i]-'0') % (mod-1);
}
ans = pow(2,num-1);
cout<<ans%mod<<endl;
str.clear();
}
return 0;
}
hdu 4704 Sum 【费马小定理】的更多相关文章
- hdu 4704 Sum 费马小定理
题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p) 然后可以推出来a^k % p = a^(k%(p-1) ...
- HDU - 6440(费马小定理)
链接:HDU - 6440 题意:重新定义加法和乘法,使得 (m+n)^p = m^p + n^p 成立,p是素数.,且satisfied that there exists an integer q ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
- hdu 4704 Sum(组合,费马小定理,快速幂)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4704: 这个题很刁是不是,一点都不6,为什么数据范围要开这么大,把我吓哭了,我kao......说笑的, ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- HDU 4704 Sum (隔板原理 + 费马小定理)
Sum Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/131072K (Java/Other) Total Submiss ...
- hdu 4704 Sum (整数和分解+高速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7). 当中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- HDU 4704 Sum( 费马小定理 + 快速幂 )
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...
- hdu 4704 sum(费马小定理+快速幂)
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1 4 s(2)=3 1,3 3,1 2,2 s ...
随机推荐
- java 字符串截取类 区分中文、英文、数字、标点符号
package com.founder.fix.ims; /** * @author WANGYUTAO * 操作字符串 */ public class SubString { // public s ...
- Business.Startup.Learning from Startup Mistakes at SpringSource
http://www.infoq.com/news/2014/07/startup-spring
- Latex基本用法
空格 需要使用 \qquad,\quad,\,应该是占位符和变量之间需要有{}相隔. $$ C_{1} \qquad {C_2} $$ $$ C_{1} \quad {C_2} $$ $$ C_{1} ...
- MySQL学习笔记-数据库文件
数据库文件 MySQL主要文件类型有如下几种 参数文件:my.cnf--MySQL实例启动的时候在哪里可以找到数据库文件,并且指定某些初始化参数,这些参数定义了某种内存结构的大小等设置,还介绍了参数类 ...
- Servlet开发的三种方法
第一种 实现 Servlet 接口,需要覆写 Servlet 的5个方法,并将ServletConfig对象保存到类级变量中 package app01a; import java.io.IOExce ...
- jvm gc 算法
1标记-清除法 他是现代垃圾回收算法的思想基础. 标记-清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段. 在标记阶段,首先通过根节点,标记所有从根节点开始的可达对象(根搜索算法).而未被标记的对象 ...
- tomcat运行监控脚本,自动启动
参见:http://www.cnblogs.com/coffee_cn/p/8279165.html monitor.sh #!/bin/sh monitorlog=/usr/local/tomcat ...
- Oracle12c的卸载
之前电脑装了Oracle12c 现在希望删除重新安装: 参照教程: http://jingyan.baidu.com/article/642c9d34e1cbdd644a46f7de.html E:\ ...
- SQL查找指定行的记录
select top 1 * from (select top 4 * from T_GasStationPrice order by EnableTime) a order by EnableTim ...
- 【RabbitMQ】 RabbitMQ安装
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们.消息传递指的是程序之间 ...