题解

如果不加这条边,那么答案是所有点入度的乘积

加上了这条边之后,我们转而统计不合法的方案数

就是相当于统计一条路径从y到x,新图所有点度的乘积除上这条路径所有点的点度乘积

初始化为\(f[y] = \frac{\prod_{i = 2}^{n} ind[i]}{ind[y]}\)

转移按照拓扑序转移

如果u能到v

\(f[v] += \frac{f[u]}{ind[v]}\)

用总答案减掉f[x]即可

特判掉y = 1的情况

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef long double db;
typedef unsigned int u32;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
struct node {
int to,next;
}E[MAXN * 2];
const int MOD = 1000000007;
int N,M,x,y,head[MAXN],sumE,ind[MAXN],f[MAXN],c[MAXN],inv[MAXN];
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
queue<int> Q;
void BFS() {
Q.push(1);
while(!Q.empty()) {
int u = Q.front();Q.pop();
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
f[v] = inc(f[v],mul(f[u],inv[v]));
--c[v];
if(!c[v]) Q.push(v);
}
}
}
void Solve() {
read(N);read(M);read(x);read(y);
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
add(u,v);ind[v]++;
}
if(y == 1) {
int ans = 1;
for(int i = 2 ; i <= N ; ++i) ans = mul(ans,ind[i]);
out(ans);enter;
}
else {
f[y] = 1;
for(int i = 2 ; i <= N ; ++i) {
if(i != y) f[y] = mul(f[y],ind[i]);
}
for(int i = 1 ; i <= N ; ++i) {c[i] = ind[i];inv[i] = fpow(ind[i],MOD - 2);}
BFS();
int ans = 1;
++ind[y];
for(int i = 2 ; i <= N ; ++i) ans = mul(ans,ind[i]);
ans = inc(ans,MOD - f[x]);
out(ans);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【LOJ】#2115. 「HNOI2015」落忆枫音的更多相关文章

  1. 【BZOJ4011】【HNOI2015】落忆枫音(动态规划)

    [BZOJ4011][HNOI2015]落忆枫音(动态规划) 题面 BZOJ 洛谷 Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜 ...

  2. 【BZOJ】【4011】【HNOI2015】落忆枫音

    拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/44487 ...

  3. BZOJ 4011 【HNOI2015】 落忆枫音

    题目链接:落忆枫音 以下内容参考PoPoQQQ大爷的博客 首先我们先来考虑一下如果没有新加入的那条边,答案怎么算. 由于这是一个\(DAG\),所以我们给每个点随便选择一条入边,最后一定会构成一个树形 ...

  4. 【bzoj4011 hnoi2015】落忆枫音

    题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...

  5. 「HNOI 2015」落忆枫音

    题目链接 戳我 \(Description\) 给一张\(n\)割点\(m\)条边的\(DAG\),保证点\(1\)不存在入边,现在需要在\(DAG\)中加入一条不在原图中的边\((x,y)\),求这 ...

  6. 【HNOI2015】落忆枫音

    题面 题解 求一个有特殊性质的有向图的生成树的个数. 首先,有向图的生成树的个数可以用矩阵树定理,能够得到\(40\)分. 但是如果它是一个\(\mathrm{DAG}\)就很好做,枚举每一个点的父亲 ...

  7. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  8. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  9. [HNOI2015]落忆枫音 解题报告

    [HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...

随机推荐

  1. 数位DP学习笔记

    数位DP学习笔记 什么是数位DP? 数位DP比较经典的题目是在数字Li和Ri之间求有多少个满足X性质的数,显然对于所有的题目都可以这样得到一些暴力的分数 我们称之为朴素算法: for(int i=l_ ...

  2. 【转】I2C总线协议

    I2C总线(Inter Integrated-Circuit)是由PHILIPS公司在上世纪80年代发明的一种电路板级串行总线标准,通过两根信号线——时钟线SCL和数据线SDA——即可完成主从机的单工 ...

  3. 结合NTLM中继和Kerberos委派攻击AD

    0x00 前言 在上个月我深入演讲了无约束委派之后,本文将讨论一种不同类型的Kerberos委派:基于资源的约束委派.本文的内容基于Elad Shamir的Kerberos研究,并结合我自己的NTLM ...

  4. Nginx的基本配置案例

    Nginx的基本配置案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Nginx配置虚拟主机   .操作系统环境 [root@yinzhengjie ~]# cat /etc ...

  5. JavaScript基本数据类型介绍

    JavaScript基本数据类型介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是javascript JavaScript一种直译式脚本语言,是一种动态类型.弱类型. ...

  6. SQL记录-PLSQL触发器

    PL/SQL触发器 触发器是存储程序,它会自动执行或发射当一些事件发生.触发器,事实上,写入响应于以下任一事件将被执行: 数据库操作(DML)语句(DELETE,INSERT,UPDATE或) 数据库 ...

  7. 8 Productivity hacks for Data Scientists & Business Analysts

    8 Productivity hacks for Data Scientists & Business Analysts Introduction I was catching up with ...

  8. Nginx学习总结

    2017年2月23日, 星期四 Nginx学习总结 Nginx是目前比较主流的HTTP反向代理服务器(其企业版提供了基于TCP层的反向代理插件),对于构建大型分布式web应用,具有举足轻重的作用.简单 ...

  9. Python学习笔记5-时间模块time/datetime

    import time time.sleep(2) #等待几秒 # 1.格式化好的时间 2018-1-14 16:42 # 2.时间戳 是从unix元年到现在所有的秒数 # 3.时间元组 #想时间戳和 ...

  10. ASP.NET私有构造函数作用

    一.私有构造函数的特性 1.一般构造函数不是私有或者保护成员,但构造函数可以使私有成员函数,在一些特殊的场合,会把构造函数定义为私有或者保护成员. 2.私有构造函数是一种特殊的实例构造函数.它通常用在 ...