例子

iris数据训练Logistic模型。特征petal width和petal height,分类目标有三类。

import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession object Test1 extends App {
val spark = SparkSession
.builder
.appName("StructuredNetworkWordCountWindowed")
.master("local[3]")
.config("spark.sql.shuffle.partitions", 3)
.config("spark.sql.autoBroadcastJoinThreshold", 1)
.getOrCreate()
spark.sparkContext.setLogLevel("INFO") val sc = spark.sparkContext
val data: RDD[LabeledPoint] = sc.textFile("iris.txt").map { line =>
val linesp = line.split("\\s+")
LabeledPoint(linesp(2).toInt, Vectors.dense(linesp(0).toDouble, linesp(1).toDouble))
} // Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1) // Run training algorithm to build the model
val model = new LogisticRegressionWithLBFGS()
.setIntercept(true)
.setNumClasses(3)
.run(training) // Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
} // Get evaluation metrics.
val metrics = new MulticlassMetrics(predictionAndLabels)
val accuracy = metrics.accuracy
println(s"Accuracy = $accuracy") }

训练结果

Accuracy = 0.9516129032258065
model : org.apache.spark.mllib.classification.LogisticRegressionModel: intercept = 0.0, numFeatures = 6, numClasses = 3, threshold = 0.5
weights = [10.806033250918638,59.0125055499883,-74.5967318848371,15.249528477342315,72.68333443959429,-119.02776352645247]

模型将特征空间划分结果(画图代码参见 http://www.cnblogs.com/luweiseu/p/7826679.html):

ML LogisticRegress算法

算法流程在:

org.apache.spark.ml.classification.LogisticRegression
protected[org.apache.spark] def train(dataset: Dataset[_],
handlePersistence: Boolean): LogisticRegressionModel

主要算法在:

val costFun = new LogisticCostFun(instances, numClasses, $(fitIntercept),
$(standardization), bcFeaturesStd, regParamL2, multinomial = isMultinomial,
$(aggregationDepth))

LogisticCostFun 实现了Breeze's DiffFunction[T]函数,计算multinomial (softmax) logistic loss

function, as used in multi-class classification (it is also used in binary logistic regression).

It returns the loss and gradient with L2 regularization at a particular point (coefficients).

该函数分布式计算参数梯度矩阵和损失

val logisticAggregator = {
// 每个训练数据instance参与计算梯度矩阵
val seqOp = (c: LogisticAggregator, instance: Instance) => c.add(instance)
// 各个partition的aggregator merge
val combOp = (c1: LogisticAggregator, c2: LogisticAggregator) => c1.merge(c2)
// spark聚合调用
instances.treeAggregate(
new LogisticAggregator(bcCoeffs, bcFeaturesStd, numClasses, fitIntercept,
multinomial)
)(seqOp, combOp, aggregationDepth)
}

Breeze凸优化:

LogisticCostFun 作为Breeze的凸优化模块(例如LBFGSB)的参数,计算最优的参数结果:

val states = optimizer.iterations(new CachedDiffFunction(costFun),
new BDV[Double](initialCoefWithInterceptMatrix.toArray))

LogisticCostFun 梯度计算(LogisticAggregator)

该模块包含了LogisticRegression训练多类分类器时迭代(online)的逻辑。

主要逻辑是给定一个训练样本\(x_i\),计算该样本对梯度矩阵中各个元素\(\beta_{j,k}\)的贡献。

LogisticAggregator computes the gradient and loss for binary or multinomial logistic (softmax)

loss function, as used in classification for instances in sparse or dense vector in an online

fashion.

Two LogisticAggregators can be merged together to have a summary of loss and gradient of

the corresponding joint dataset.

For improving the convergence rate during the optimization process and also to prevent against

features with very large variances exerting an overly large influence during model training,

packages like R's GLMNET perform the scaling to unit variance and remove the mean in order to

reduce the condition number. The model is then trained in this scaled space, but returns the

coefficients in the original scale. See page 9 in

http://cran.r-project.org/web/packages/glmnet/glmnet.pdf

However, we don't want to apply the [[org.apache.spark.ml.feature.StandardScaler]] on the

training dataset, and then cache the standardized dataset since it will create a lot of overhead.

As a result, we perform the scaling implicitly when we compute the objective function (though

we do not subtract the mean).

Note that there is a difference between multinomial (softmax) and binary loss. The binary case

uses one outcome class as a "pivot" and regresses the other class against the pivot. In the

multinomial case, the softmax loss function is used to model each class probability

independently. Using softmax loss produces K sets of coefficients, while using a pivot class

produces K - 1 sets of coefficients (a single coefficient vector in the binary case). In the

binary case, we can say that the coefficients are shared between the positive and negative

classes. When regularization is applied, multinomial (softmax) loss will produce a result

different from binary loss since the positive and negative don't share the coefficients while the

binary regression shares the coefficients between positive and negative.

The following is a mathematical derivation for the multinomial (softmax) loss.

The probability of the multinomial outcome \(y\) taking on any of the K possible outcomes is:

\[P(y_i=0|\vec{x}_i, \beta) = \frac{e^{\vec{x}_i^T \vec{\beta}_0}}{\sum_{k=0}^{K-1}
e^{\vec{x}_i^T \vec{\beta}_k}} \\
P(y_i=1|\vec{x}_i, \beta) = \frac{e^{\vec{x}_i^T \vec{\beta}_1}}{\sum_{k=0}^{K-1}
e^{\vec{x}_i^T \vec{\beta}_k}}\\
P(y_i=K-1|\vec{x}_i, \beta) = \frac{e^{\vec{x}_i^T \vec{\beta}_{K-1}}\,}{\sum_{k=0}^{K-1}
e^{\vec{x}_i^T \vec{\beta}_k}}
\]

The model coefficients \(\beta = (\beta_0, \beta_1, \beta_2, ..., \beta_{K-1})\) become a matrix

which has dimension of \(K \times (N+1)\) if the intercepts are added. If the intercepts are not

added, the dimension will be \(K \times N\).

Note that the coefficients in the model above lack identifiability. That is, any constant scalar

can be added to all of the coefficients and the probabilities remain the same.

\[\begin{align}
\frac{e^{\vec{x}_i^T \left(\vec{\beta}_0 + \vec{c}\right)}}{\sum_{k=0}^{K-1}
e^{\vec{x}_i^T \left(\vec{\beta}_k + \vec{c}\right)}}
= \frac{e^{\vec{x}_i^T \vec{\beta}_0}e^{\vec{x}_i^T \vec{c}}\,}{e^{\vec{x}_i^T \vec{c}}
\sum_{k=0}^{K-1} e^{\vec{x}_i^T \vec{\beta}_k}}
= \frac{e^{\vec{x}_i^T \vec{\beta}_0}}{\sum_{k=0}^{K-1} e^{\vec{x}_i^T \vec{\beta}_k}}
\end{align}
\]

However, when regularization is added to the loss function, the coefficients are indeed

identifiable because there is only one set of coefficients which minimizes the regularization

term. When no regularization is applied, we choose the coefficients with the minimum L2

penalty for consistency and reproducibility. For further discussion see:

Friedman, et al. "Regularization Paths for Generalized Linear Models via Coordinate Descent"

The loss of objective function for a single instance of data (we do not include the

regularization term here for simplicity) can be written as

\[\begin{align}
\ell\left(\beta, x_i\right) &= -log{P\left(y_i \middle| \vec{x}_i, \beta\right)} \\
&= log\left(\sum_{k=0}^{K-1}e^{\vec{x}_i^T \vec{\beta}_k}\right) - \vec{x}_i^T \vec{\beta}_y\\
&= log\left(\sum_{k=0}^{K-1} e^{margins_k}\right) - margins_y
\end{align}
\]

where \({margins}_k = \vec{x}_i^T \vec{\beta}_k\).

For optimization, we have to calculate the first derivative of the loss function, and a simple

calculation shows that

\[\begin{align}
\frac{\partial \ell(\beta, \vec{x}_i, w_i)}{\partial \beta_{j, k}}
&= x_{i,j} \cdot w_i \cdot \left(\frac{e^{\vec{x}_i \cdot \vec{\beta}_k}}{\sum_{k'=0}^{K-1}
e^{\vec{x}_i \cdot \vec{\beta}_{k'}}\,} - I_{y=k}\right) \\
&= x_{i, j} \cdot w_i \cdot multiplier_k
\end{align}
\]

where \(w_i\) is the sample weight, \(I_{y=k}\) is an indicator function

\[I_{y=k} = \begin{cases}
1 & y = k \\
0 & else
\end{cases}
\]

and

\[multiplier_k = \left(\frac{e^{\vec{x}_i \cdot \vec{\beta}_k}}{\sum_{k=0}^{K-1}
e^{\vec{x}_i \cdot \vec{\beta}_k}} - I_{y=k}\right)
\]

If any of margins is larger than 709.78, the numerical computation of multiplier and loss

function will suffer from arithmetic overflow. This issue occurs when there are outliers in

data which are far away from the hyperplane, and this will cause the failing of training once

infinity is introduced. Note that this is only a concern when max(margins) > 0.

Fortunately, when max(margins) = maxMargin > 0, the loss function and the multiplier can

easily be rewritten into the following equivalent numerically stable formula.

\[\ell\left(\beta, x\right) = log\left(\sum_{k=0}^{K-1} e^{margins_k - maxMargin}\right) -
margins_{y} + maxMargin
\]

Note that each term, \((margins_k - maxMargin)\) in the exponential is no greater than zero; as a

result, overflow will not happen with this formula.

For \(multiplier\), a similar trick can be applied as the following,

\[multiplier_k = \left(\frac{e^{\vec{x}_i \cdot \vec{\beta}_k - maxMargin}}{\sum_{k'=0}^{K-1}
e^{\vec{x}_i \cdot \vec{\beta}_{k'} - maxMargin}} - I_{y=k}\right)
\]

@param bcCoefficients The broadcast coefficients corresponding to the features.
@param bcFeaturesStd The broadcast standard deviation values of the features.
@param numClasses the number of possible outcomes for k classes classification problem in
Multinomial Logistic Regression.
@param fitIntercept Whether to fit an intercept term.
@param multinomial Whether to use multinomial (softmax) or binary loss @note In order to avoid unnecessary computation during calculation of the gradient updates
we lay out the coefficients in column major order during training. This allows us to
perform feature standardization once, while still retaining sequential memory access
for speed. We convert back to row major order when we create the model,
since this form is optimal for the matrix operations used for prediction.

LogisticRegression in MLLib的更多相关文章

  1. LogisticRegression in MLLib (PySpark + numpy+matplotlib可视化)

    参考'LogisticRegression in MLLib' (http://www.cnblogs.com/luweiseu/p/7809521.html) 通过pySpark MLlib训练lo ...

  2. Spark Mllib框架1

    1. 概述 1.1 功能 MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具有如下功能: ML算法:常用的学习算法,包括分类.回归.聚 ...

  3. spark MLlib Classification and regression 学习

    二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类:  ...

  4. Spark MLlib 机器学习

    本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...

  5. Spark的MLlib和ML库的区别

    机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.其目标是使实际的机器学习可扩展和容易.在高层次上,它提供了如下工具: ML算法:通用学习算法,如分类,回归,聚类和协同过滤 特 ...

  6. Spark中ml和mllib的区别

    转载自:https://vimsky.com/article/3403.html Spark中ml和mllib的主要区别和联系如下: ml和mllib都是Spark中的机器学习库,目前常用的机器学习功 ...

  7. spark mllib和ml类里面的区别

    mllib是老的api,里面的模型都是基于RDD的,模型使用的时候api也是有变化的(model这里是naiveBayes), (1:在模型训练的时候是naiveBayes.run(data: RDD ...

  8. Spark MLlib框架详解

    1. 概述 1.1 功能 MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具有如下功能: ML算法:常用的学习算法,包括分类.回归.聚 ...

  9. Spark之MLlib

    目录 Part VI. Advanced Analytics and Machine Learning Advanced Analytics and Machine Learning Overview ...

随机推荐

  1. Window7安装tensorflow整套环境详细流程

    安装tensorflow方式有好多种,为了方便编译环境以及包管理,这里采用Anaconda平台安装tensorflow. tensorflow官网:http://www.tensorflow.org/ ...

  2. Linux 双网关(电信与联通)

    经常有这种需求,一台Linux服务器配置电信IP和网通IP,默认情况下,后启动的网卡的网关生效.南电信北网通,配置电信和网通IP,无非是为了减少网络延时,使电信用户的请求响应在电信网络中传输,网通用户 ...

  3. android DatagramSocket send 发送数据出错

    安卓4.0以后好像不能在主线程里面使用 socket 所以不管是发送数据还是接收数据需要新开一个了线程: 以下代码是我点击发送是代码: new Thread(new Runnable() { @Ove ...

  4. STL基础2:vector中使用结构体

    #include <iostream> #include <vector> #include <numeric> #include <algorithm> ...

  5. hibernate集合映射inverse和cascade详解<转载>

    1.到底在哪用cascade="..."? cascade属性并不是多对多关系一定要用的,有了它只是让我们在插入或删除对像时更方便一些,只要在cascade的源头上插入或是删除,所 ...

  6. Codeforces Round #541 (Div. 2) E 字符串 + 思维 + 猜性质

    https://codeforces.com/contest/1131/problem/D 题意 给你n个字符串,字符串长度总和加起来不会超过1e5,定义字符串相乘为\(s*s1=s1+s[0]+s1 ...

  7. TCP/IP协议(7):应用层

    应用层上协议有DNS.DHCP.HTTP.SSL/TLS.FTP.Telnet等. 1.DNS域名解析 DNS服务器用来解析域名从而获得对应IP地址,我们在对网络进行设置的时候如果DNS服务器没有设置 ...

  8. mathematica入门学习记录:

    http://v.qq.com/vplus/4bc1736725fc7c3567d5bd9617482a49/foldervideos/m8k0000011aqj4k mathematica的数据 简 ...

  9. 微信小程序的新的

    app.request.get('http://ele.kassing.cn/v1/pois',this.data.city).then(res=>{ console.log(res) this ...

  10. 第27章:MongoDB-索引--唯一索引

    ①唯一索引 唯一索引的目的是为了让数据库的某个字段的值唯一,为了确保数据的都是合法的,但是唯一索引在插入数据时会对数据进行检查,一旦重复会抛出异常,效率会比较低,唯一索引只是保证数据库数据唯一的最后一 ...