传送门

生成函数好题。

题意简述:求nnn个点的树的叶子数期望值。


思路:

考虑fnf_nfn​表示nnn个节点的树的数量。

所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0)f_0=1,f_n=\sum_{i=0}^{n-1}f_if_{n-1-i}(n>0)f0​=1,fn​=∑i=0n−1​fi​fn−1−i​(n>0)

正是一个卷积的形式。

那么fnf_nfn​的生成函数F(x)=xF2(x)+1F(x)=xF^2(x)+1F(x)=xF2(x)+1 注意要填上f0f_0f0​

同理,考虑gng_ngn​表示nnn个节点的树的叶子数总数。

有递推式g0=0,g1=1,gn=2∑i=0n−1fign−i−1(n>1)g_0=0,g_1=1,g_n=2\sum_{i=0}^{n-1}f_ig_{n-i-1}(n>1)g0​=0,g1​=1,gn​=2∑i=0n−1​fi​gn−i−1​(n>1)

所以gng_ngn​的生成函数G(x)=2xF(x)G(x)+xG(x)=2xF(x)G(x)+xG(x)=2xF(x)G(x)+x 注意要填上g1g_1g1​

然后F(x)=xF2(x)+1F(x)=xF^2(x)+1F(x)=xF2(x)+1

<=>xF2(x)−F(x)+1=0xF^2(x)-F(x)+1=0xF2(x)−F(x)+1=0

<=>F(x)=1−1−4x2xF(x)=\frac{1-\sqrt{1-4x}}{2x}F(x)=2x1−1−4x​​ 不取1+1−4x2x\frac{1+\sqrt{1-4x}}{2x}2x1+1−4x​​是因为它不能向0收敛

G(x)=x1−2xF(x)=x1−4xG(x)=\frac x{1-2xF(x)}=\frac x{\sqrt{1-4x}}G(x)=1−2xF(x)x​=1−4x​x​

然后我们对xF(x)xF(x)xF(x)求导:(xF(x))′=11−4x=G(x)x(xF(x))'=\frac1{\sqrt{1-4x}}=\frac{G(x)}x(xF(x))′=1−4x​1​=xG(x)​

而对于xF(x)xF(x)xF(x)第nnn项fnxn+1f_nx^{n+1}fn​xn+1求导之后会变成fn(n+1)xnf_n(n+1)x^nfn​(n+1)xn等式右边:gn+1xn+1x=gn+1xn\frac{g_{n+1}x^{n+1}}x=g_{n+1}x^nxgn+1​xn+1​=gn+1​xn,那么gn+1=fn(n+1)g_{n+1}=f_n(n+1)gn+1​=fn​(n+1)

我们令答案的函数是A(x)=∑i=0∞pnxnA(x)=\sum_{i=0}^{\infty}p_nx^nA(x)=∑i=0∞​pn​xn

那么gn=fn−1n=pnfn=&gt;pn=fn−1nfng_n=f_{n-1}n=p_nf_n=&gt;p_n=\frac{f_{n-1}}{nf_n}gn​=fn−1​n=pn​fn​=>pn​=nfn​fn−1​​

仔细观察会发现fnf_nfn​是卡特兰数,然后带入就做完了。

代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    double n;
    return scanf("%lf",&n),printf("%.9lf",n*(n+1)/(4*n-2)),0;
}

2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)的更多相关文章

  1. 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)

    传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...

  2. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  3. BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)

    设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...

  4. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  5. 【bzoj4001】[TJOI2015]概率论 生成函数+导数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...

  6. BZOJ4001 [TJOI2015]概率论 【生成函数】

    题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...

  7. 2018.12.31 NOIP训练 偶数个5(简单数论)

    传送门 对于出题人zxyoizxyoizxyoi先%\%%为敬题目需要龟速乘差评. 题意简述:5e55e55e5组数据,给出n,请你求出所有n位数中有偶数个5的有多少,n≤1e18n\le1e18n≤ ...

  8. 2018.12.30 bzoj3028: 食物(生成函数)

    传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21​ ...

  9. 2018.12.30 poj3734 Blocks(生成函数)

    传送门 生成函数入门题. 按照题意构造函数: 对于限定必须是出现偶数次的颜色:1+x22!+x44!+...=ex+e−x21+\frac {x^2}{2!}+\frac {x^4}{4!}+...= ...

随机推荐

  1. 设置获取cookie,setCookie,getCookie

    设置cookie: function setCookie(name,value) { var Days = 30; var exp = new Date(); exp.setTime(exp.getT ...

  2. echarts柱状图Demo

    echarts链接:http://gallery.echartsjs.com/editor.html?c=xB1Sfo5JbX 代码: var xData = ['a', 'b', 'c', 'd', ...

  3. [leetcode]692. Top K Frequent Words K个最常见单词

    Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...

  4. day 20 类与类之间的关系,继承2

    类与类之间的关系: 依赖关系 关联关系 聚合关系 组合关系 依赖关系: 大象与冰箱的例子 # 依赖关系,冰箱依赖大象打开 class Elephant: def __init__(self,name) ...

  5. WEB框架Django之ORM操作

    一 ORM的简介 MVC或者MVC框架中包括的一个重要部分就是ORM,它实现了数据模型与数据库的解耦. 即数据模型的设计不需要依赖于特定的数据库,通过简单的配置可以轻松更换数据库,这可以大大减少开发人 ...

  6. Ubuntu1.6安装Go【小白版】

    [安装golang,并配置环境变量]1.将go下载到Home目录并解压 一键解压会 自动会解压到 Home/go目录. 2.设置环境变量 nano是一种文本编辑器,也可以用其他的编辑器. 输入以下命令 ...

  7. Vim完全教程

    一.简介 世界上只有三种编辑器,EMACS.VIM和其它.   我们所处的时代是非常幸运的,有越来越多的编辑器,相对于古老的VIM和EMACS,它们被称为现代编辑器.我们来看看这两个古董有多大年纪了: ...

  8. 关系测试# 或 print(s2-s)Python 集合

    1集合是一个无序的,不重复的数据组合,它的主要作用如下(set和dict类似,也是一组key的集合,但不存储value.由于key不能重复,所以,在set中,没有重复的key): 去重,把一个列表变成 ...

  9. Quartus11中新建工程

    最近在使用CycloneII的开发板,但是高版本的Quartus不支持II系列的开发,于是只能用Q11了.好久没玩FPGA了,新建工程的过程中遇到了一些问题,这里把这些问题记下了以便以后查看. Qua ...

  10. (转)JavaScript escape() 函数(该方法不会对 ASCII 字母和数字进行编码,也不会对下面这些 ASCII 标点符号进行编码: * @ - _ + . / 。其他所有的字符都会被转义序列替换。)

    JavaScript escape() 函数 JavaScript 全局对象参考手册 定义和用法 escape() 函数可对字符串进行编码,这样就可以在所有的计算机上读取该字符串. 语法 escape ...