1 协同过滤算法

  协同过滤算法是现在推荐系统的一种常用算法。分为user-CF和item-CF。

  本文的电影推荐系统使用的是item-CF,主要是由于用户数远远大于电影数,构建矩阵的代价更小;另外,电影推荐系统中使用基于物品的推荐对用户来说更有说服力。因此本文对user-CF只做简单介绍,主要介绍item-CF。

  1.1 基于用户的协同过滤算法

      a 计算出用户两两之间的相似度,得到用户相似度矩阵;

      b 预测用户的喜好,使用公式:

    

     其中,p(u,i)表示用户u对物品i的感兴趣程度,S(u,k)表示和用户u兴趣最接近的K个用户,N(i)表示对物品i有过行为的用户集合,Wuv表示用户u和用户v的兴趣相似度,Rvi表示用户v对物品i的兴趣。

     c 根据预测出来的喜好度来做推荐。

   1.2 基于物品的协同过滤算法

     1.2.1 物品相似度计算

     物品相似度的计算有多种。在这里使用同现矩阵。其中第m行第n列的元素表示物品m和物品n的相似度,具体是:如果一个用户同时看过电影m和n,则m和n的相似度就加1。还要对如下所示:

     之后还要对同现矩阵做归一化,注意归一化之后矩阵不是对称的:

      1.2.2 预测用户对未看电影的打分

      用户打分的预测值由下式计算:

      

      因此,最后得到的预测矩阵可由同现矩阵与评分矩阵直接相乘得到:

      1.2.3 推荐

      根据预测的打分,选出未看电影中的topk即生成推荐列表。

2 mapReduce工作流程

2.1 输入数据形式

表示userID, movieID,评分

2.2 总体流程

2.3 MR1

  MR1负责数据预处理,将同一个user的数据merge到一起。

  mapper负责拆分数据:

  reducer负责合并:

2.4 MR2

  MR2负责构建同现矩阵。

  mapper将一个用户看过的每部电影进行两两组合发送:

  reducer负责merge这些值,就得到同现矩阵的每个单元(行号:列号):

2.5 MR3

   MR3负责将同现矩阵归一化。

   mapper 负责读取上一个MR产生的同现矩阵cells,然后按行号发送到reducer(由于归一化是按行的,所以这里要以行号为Key)。

     reducer将得到的一行sum之后,用原来的值除以sum得到归一化的值,然后将每个单元按照列号写入HDFS(按列号写是为之后的矩阵相乘做准备)。

   因此,MR3的输入输出如下:

2.6 MR4

  MR4将完成矩阵小单元相乘的工作。

  mapper1负责读入归一化的同现矩阵的小单元,然后按列号发送(之前已经按列号存储了,这里直接读取并发送就行)

  mapper2负责读取输入的rowdata文件,即评分矩阵的每个小单元,然后按行号(movie id)发送:

   在reducer中,接收到的值分别来自同现矩阵的第x列和评分矩阵的第x行。我们知道,最终生成的预测矩阵i行j列的小单元(i,j)是等于对应的同现矩阵的(i, x)乘以评分矩阵的(x, j),再对所有x求和。而这里的reducer中聚集了所有x值相同的来自两个矩阵的小单元,因此它们两两之间是可以互乘的。这里我们用=和:来区分两个矩阵的小单元。下图中橘黄色是处于同一个reducer里面的小单元,将来自同现矩阵和评分矩阵的小单元区分开后,将它们两两相乘,得到预测矩阵的行号与列号的不同组合,以它为key写入hdfs。

2.7 MR5

  MR5负责将乘积的结果相加。

  

3 主要代码

DataDividerByUser.java

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.IntWritable;
 import org.apache.hadoop.io.LongWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.Mapper;
 import org.apache.hadoop.mapreduce.Reducer;
 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 import java.io.IOException;

 public class DataDividerByUser {
     public static class DataDividerMapper extends Mapper<LongWritable, Text, IntWritable, Text> {

         // map method
         @Override
         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
             //input user,movie,rating
             String[] user_movie_rating = value.toString().split(",");
             int userId = Integer.parseInt(user_movie_rating[0]);
             String outPutKey = user_movie_rating[1] + ":" + user_movie_rating[2];
             //divide data by user
             context.write(new IntWritable(userId), new Text(outPutKey));
         }
     }

     public static class DataDividerReducer extends Reducer<IntWritable, Text, IntWritable, Text> {
         // reduce method
         @Override
         public void reduce(IntWritable key, Iterable<Text> values, Context context)
                 throws IOException, InterruptedException {
             StringBuilder sb = new StringBuilder();
             //merge data for one user
             for (Text value : values) {
                 sb.append(value.toString());
                 sb.append(",");
             }
             sb.deleteCharAt(sb.length() - 1);
             context.write(key, new Text(sb.toString()));
         }
     }

     public static void main(String[] args) throws Exception {

         Configuration conf = new Configuration();

         Job job = Job.getInstance(conf);
         job.setMapperClass(DataDividerMapper.class);
         job.setReducerClass(DataDividerReducer.class);

         job.setJarByClass(DataDividerByUser.class);

         job.setInputFormatClass(TextInputFormat.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         job.setOutputKeyClass(IntWritable.class);
         job.setOutputValueClass(Text.class);

         TextInputFormat.setInputPaths(job, new Path(args[0]));
         TextOutputFormat.setOutputPath(job, new Path(args[1]));

         job.waitForCompletion(true);
     }

 }

CoOccurrenceMatrixGenerator.java

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.IntWritable;
 import org.apache.hadoop.io.LongWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.Mapper;
 import org.apache.hadoop.mapreduce.Reducer;
 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 import java.io.IOException;
 import java.util.ArrayList;
 import java.util.List;

 public class CoOccurrenceMatrixGenerator {
     public static class MatrixGeneratorMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

         // map method
         @Override
         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
             //value = userid \t movie1: rating, movie2: rating...
             String[] movie_rating = value.toString().split("\t")[1].split(",");
             //key = movie1: movie2 value = 1
             //calculate each user rating list: <movieA, movieB>
             for (int i = 0; i < movie_rating.length; i++) {
                 for (int j = 0; j < movie_rating.length; j++) {
                     String outPutKey = movie_rating[i].split(":")[0] + ":" + movie_rating[j].split(":")[0];
                     context.write(new Text(outPutKey), new IntWritable(1));
                 }
             }
         }
     }

     public static class MatrixGeneratorReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
         // reduce method
         @Override
         public void reduce(Text key, Iterable<IntWritable> values, Context context)
                 throws IOException, InterruptedException {
             //key movie1:movie2 value = iterable<1, 1, 1>
             //calculate each two movies have been watched by how many people
             int sum = 0;
             for (IntWritable value : values) {
                 sum += value.get();
             }
             context.write(key, new IntWritable(sum));
         }
     }

     public static void main(String[] args) throws Exception{

         Configuration conf = new Configuration();

         Job job = Job.getInstance(conf);
         job.setMapperClass(MatrixGeneratorMapper.class);
         job.setReducerClass(MatrixGeneratorReducer.class);

         job.setJarByClass(CoOccurrenceMatrixGenerator.class);

         job.setInputFormatClass(TextInputFormat.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(IntWritable.class);

         TextInputFormat.setInputPaths(job, new Path(args[0]));
         TextOutputFormat.setOutputPath(job, new Path(args[1]));

         job.waitForCompletion(true);

     }
 }

Normalize.java

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.LongWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.Mapper;
 import org.apache.hadoop.mapreduce.Reducer;
 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 import java.io.IOException;
 import java.util.HashMap;
 import java.util.Map;

 public class Normalize {

     public static class NormalizeMapper extends Mapper<LongWritable, Text, Text, Text> {

         // map method
         @Override
         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

             //movieA:movieB \t relation
             String movieA = value.toString().split("\t")[0].split(":")[0];
             String movieB = value.toString().split("\t")[0].split(":")[1];
             String relation = value.toString().split("\t")[1];
             //collect the relationship list for movieA
             context.write(new Text(movieA), new Text(movieB + ":" + relation));
         }
     }

     public static class NormalizeReducer extends Reducer<Text, Text, Text, Text> {
         // reduce method
         @Override
         public void reduce(Text key, Iterable<Text> values, Context context)
                 throws IOException, InterruptedException {

             //key = movieA, value=<movieB:relation, movieC:relation...>
             //normalize each unit of co-occurrence matrix
             Map<String, Double> map = new HashMap<String, Double>();
             double sum = 0;
             for (Text value : values) {
                 String[] movie_relation = value.toString().split(":");
                 map.put(movie_relation[0], Double.parseDouble(movie_relation[1]));
                 sum += Double.parseDouble(movie_relation[1]);
             }
             for (Map.Entry<String, Double> entry : map.entrySet()) {
                 String outputKey = entry.getKey();
                 String outputValue = key.toString() + "=" + String.valueOf(entry.getValue() / sum);
                 context.write(new Text(outputKey), new Text(outputValue));
             }
         }
     }

     public static void main(String[] args) throws Exception {

         Configuration conf = new Configuration();

         Job job = Job.getInstance(conf);
         job.setMapperClass(NormalizeMapper.class);
         job.setReducerClass(NormalizeReducer.class);

         job.setJarByClass(Normalize.class);

         job.setInputFormatClass(TextInputFormat.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(Text.class);

         TextInputFormat.setInputPaths(job, new Path(args[0]));
         TextOutputFormat.setOutputPath(job, new Path(args[1]));

         job.waitForCompletion(true);
     }
 }

Multiplication.java

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.DoubleWritable;
 import org.apache.hadoop.io.LongWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.Mapper;
 import org.apache.hadoop.mapreduce.Reducer;
 import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
 import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 import java.io.IOException;
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;

 public class Multiplication {
     public static class CooccurrenceMapper extends Mapper<LongWritable, Text, Text, Text> {

         // map method
         @Override
         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
             //input: movieB \t movieA=relation
             //pass data to reducer
             String[] movieB_movieARelation = value.toString().split("\t");
             context.write(new Text(movieB_movieARelation[0]), new Text(movieB_movieARelation[1]));
         }
     }

     public static class RatingMapper extends Mapper<LongWritable, Text, Text, Text> {

         // map method
         @Override
         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

             //input: user,movie,rating
             //pass data to reducer
             String[] user_movie_rating = value.toString().split(",");
             String outputKey = user_movie_rating[0] + ":" + user_movie_rating[2];
             context.write(new Text(user_movie_rating[1]), new Text(outputKey));
         }
     }

     public static class MultiplicationReducer extends Reducer<Text, Text, Text, DoubleWritable> {
         // reduce method
         @Override
         public void reduce(Text key, Iterable<Text> values, Context context)
                 throws IOException, InterruptedException {

             //key = movieB value = <movieA=relation, movieC=relation... userA:rating, userB:rating...>
             //collect the data for each movie, then do the multiplication
             Map<String, Double> coMap = new HashMap<String, Double>();
             Map<String, Double> ratingMap = new HashMap<String, Double>();
             for (Text value : values) {
                 String s = value.toString();
                 if (s.contains("=")) {
                     coMap.put(s.split("=")[0], Double.parseDouble(s.split("=")[1]));
                 } else {
                     ratingMap.put(s.split(":")[0], Double.parseDouble(s.split(":")[1]));
                 }
             }
             for (Map.Entry<String, Double> entry1 : coMap.entrySet()) {
                 for (Map.Entry<String, Double> entry2 : ratingMap.entrySet()) {
                     double mult = entry1.getValue() * entry2.getValue();
                     String outputKey = entry2.getKey() + ":" + entry1.getKey();
                     context.write(new Text(outputKey), new DoubleWritable(mult));
                 }
             }
          }
     }

     public static void main(String[] args) throws Exception {
         Configuration conf = new Configuration();

         Job job = Job.getInstance(conf);
         job.setJarByClass(Multiplication.class);

         ChainMapper.addMapper(job, CooccurrenceMapper.class, LongWritable.class, Text.class, Text.class, Text.class, conf);
         ChainMapper.addMapper(job, RatingMapper.class, Text.class, Text.class, Text.class, Text.class, conf);

         job.setMapperClass(CooccurrenceMapper.class);
         job.setMapperClass(RatingMapper.class);

         job.setReducerClass(MultiplicationReducer.class);

         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(Text.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(DoubleWritable.class);

         MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, CooccurrenceMapper.class);
         MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, RatingMapper.class);

         TextOutputFormat.setOutputPath(job, new Path(args[2]));

         job.waitForCompletion(true);
     }
 }

Sum.java

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.DoubleWritable;
 import org.apache.hadoop.io.LongWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.Mapper;
 import org.apache.hadoop.mapreduce.Reducer;
 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 import java.io.IOException;

 /**
  * Created by Michelle on 11/12/16.
  */
 public class Sum {

     public static class SumMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {

         // map method
         @Override
         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

             //pass data to reducer
             String[] key_value = value.toString().split("\t");
             context.write(new Text(key_value[0]), new DoubleWritable(Double.parseDouble(key_value[1])));
         }
     }

     public static class SumReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
         // reduce method
         @Override
         public void reduce(Text key, Iterable<DoubleWritable> values, Context context)
                 throws IOException, InterruptedException {

             //user:movie relation
            //calculate the sum
             double sum = 0;
             for (DoubleWritable value : values) {
                 sum += value.get();
             }
             context.write(key, new DoubleWritable(sum));
         }
     }

     public static void main(String[] args) throws Exception {

         Configuration conf = new Configuration();

         Job job = Job.getInstance(conf);
         job.setMapperClass(SumMapper.class);
         job.setReducerClass(SumReducer.class);

         job.setJarByClass(Sum.class);

         job.setInputFormatClass(TextInputFormat.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(DoubleWritable.class);

         TextInputFormat.setInputPaths(job, new Path(args[0]));
         TextOutputFormat.setOutputPath(job, new Path(args[1]));

         job.waitForCompletion(true);
     }
 }

Driver.java

 public class Driver {
     public static void main(String[] args) throws Exception {

         DataDividerByUser dataDividerByUser = new DataDividerByUser();
         CoOccurrenceMatrixGenerator coOccurrenceMatrixGenerator = new CoOccurrenceMatrixGenerator();
         Normalize normalize = new Normalize();
         Multiplication multiplication = new Multiplication();
         Sum sum = new Sum();

         String rawInput = args[0];
         String userMovieListOutputDir = args[1];
         String coOccurrenceMatrixDir = args[2];
         String normalizeDir = args[3];
         String multiplicationDir = args[4];
         String sumDir = args[5];
         String[] path1 = {rawInput, userMovieListOutputDir};
         String[] path2 = {userMovieListOutputDir, coOccurrenceMatrixDir};
         String[] path3 = {coOccurrenceMatrixDir, normalizeDir};
         String[] path4 = {normalizeDir, rawInput, multiplicationDir};
         String[] path5 = {multiplicationDir, sumDir};

         dataDividerByUser.main(path1);
         coOccurrenceMatrixGenerator.main(path2);
         normalize.main(path3);
         multiplication.main(path4);
         sum.main(path5);

     }

 }

mapReduce编程之Recommender System的更多相关文章

  1. MapReduce编程之wordcount

    实践 MapReduce编程之wordcount import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Fi ...

  2. MapReduce编程之Reduce Join多种应用场景与使用

    在关系型数据库中 Join 是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求, 例如在数据分析时需要连接从不同的数据源中获取到数据.不同于传统的单机模式 ...

  3. MapReduce编程之Semi Join多种应用场景与使用

    Map Join 实现方式一 ● 使用场景:一个大表(整张表内存放不下,但表中的key内存放得下),一个超大表 ● 实现方式:分布式缓存 ● 用法: SemiJoin就是所谓的半连接,其实仔细一看就是 ...

  4. MapReduce编程之Map Join多种应用场景与使用

    Map Join 实现方式一:分布式缓存 ● 使用场景:一张表十分小.一张表很大. ● 用法: 在提交作业的时候先将小表文件放到该作业的DistributedCache中,然后从DistributeC ...

  5. mapReduce编程之auto complete

    1 n-gram模型与auto complete n-gram模型是假设文本中一个词出现的概率只与它前面的N-1个词相关.auto complete的原理就是,根据用户输入的词,将后续出现概率较大的词 ...

  6. mapReduce编程之google pageRank

    1 pagerank算法介绍 1.1 pagerank的假设 数量假设:每个网页都会给它的链接网页投票,假设这个网页有n个链接,则该网页给每个链接平分投1/n票. 质量假设:一个网页的pagerank ...

  7. Hadoop基础-Map端链式编程之MapReduce统计TopN示例

    Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...

  8. C#可扩展编程之MEF学习笔记(五):MEF高级进阶

    好久没有写博客了,今天抽空继续写MEF系列的文章.有园友提出这种系列的文章要做个目录,看起来方便,所以就抽空做了一个,放到每篇文章的最后. 前面四篇讲了MEF的基础知识,学完了前四篇,MEF中比较常用 ...

  9. C#可扩展编程之MEF学习笔记(四):见证奇迹的时刻

    前面三篇讲了MEF的基础和基本到导入导出方法,下面就是见证MEF真正魅力所在的时刻.如果没有看过前面的文章,请到我的博客首页查看. 前面我们都是在一个项目中写了一个类来测试的,但实际开发中,我们往往要 ...

随机推荐

  1. git放弃本地修改 强制更新

    git fetch --all git reset --hard origin/mastergit fetch 只是下载远程的库的内容,不做任何的合并 git reset 把HEAD指向刚刚下载的最新 ...

  2. Fullscreen API 全屏显示网页

    可参考文档:http://blog.csdn.net/tywali/article/details/8623938 脚本代码 <script type="text/javascript ...

  3. 十分钟轻松让你认识ASP.NET 5(MVC6)

    ASP.NET 5差不多快发布了.自己也学习了有两个月了.今天给没有接触asp.net 5的同学写一个简单地十分钟教程,教你认识一下asp.net 5. 1.安装kvm 首先,你需要以管理员权限打开c ...

  4. 订餐系统之Excel批量导入

    批量导入现在基本已经成为各类系统的标配了,当前,我们订餐系统也不例外,什么商家呀.商品呀.优惠码之类的,都少不了.毕竟嘛,对非开发人员来说,看到Excel肯定比看到很多管理系统还是要亲切很多的.这里, ...

  5. dockerRegistry搭建

    docker registry安装: 官方仓库下载registry     pull镜像: fu@ubuntu:~$ sudo docker pull registry    运行镜像 : sudo ...

  6. poj-3264-Balanced Lineup

    poj   3264  Balanced Lineup link: http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS ...

  7. C#-WinForm-Winform TextBox中只能输入数字的几种常用方法(C#)

    方法一: private void tBox_KeyPress(object sender, KeyPressEventArgs e) { if (e.KeyChar == 0x20) e.KeyCh ...

  8. 彻底理解js中this的指向,不必硬背。

    首先必须要说的是,this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象(这句话有些问题,后面会解释为什么会有问题,虽然 ...

  9. jsp如何自定义tag的标签库?

    虽然和上一次的使用自定义的tld标签简化jsp的繁琐操作的有点不同,但是目的也是一致的.自定义tag比较简单. 1.新建tag标签 在WEB-INF目录下新建一个tags的文件夹,是自定义tag标签的 ...

  10. 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)

    D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...