Blocks
Description
solution
这题和之前做过的一题的一个套路非常类似:把不是更优的决策给去掉,使得序列变得具有单调性,分析这题:
发现如果两个右端点 \(i\),\(j\) 满足 \(sum[j]<sum[i]\) 且 \(j<i\),那么 \(j\) 是不会进入最优决策的.
同理:如果两个左端点 \(i\),\(j\) 满足 \(sum[j]<sum[i]\) 且 \(i<j\) 那么 \(i\) 是不会进入最优决策的
所以我们分别维护一个左右端点的单调栈,然后两个单调指针扫一遍答案取Max即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1000005;
inline int gi(){
RG int str=0;RG char ch=getchar();
while(ch>'9' || ch<'0')ch=getchar();
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return str;
}
int n,Q,a[N],st[N],q[N],tp=0;ll sum[N];
inline void solve(ll x){
int top=0,ans=0,tp=0;
q[++tp]=0;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+a[i]-x;
if(sum[i]<sum[q[tp]])q[++tp]=i;
}
for(int i=n;i>=1;i--){
if(!top || sum[i]>sum[st[top]])st[++top]=i;
}
for(int i=1;i<=tp;i++){
while(top>1 && sum[q[i]]<=sum[st[top-1]])top--;
if(q[i]<st[top] && sum[st[top]]-sum[q[i]]>=0)
ans=Max(ans,st[top]-q[i]);
}
printf("%d ",ans);
}
void work()
{
scanf("%d%d",&n,&Q);
for(int i=1;i<=n;i++)a[i]=gi();
for(int i=1;i<=Q;i++)solve(gi());
}
int main()
{
work();
return 0;
}
Blocks的更多相关文章
- 从Script到Code Blocks、Code Behind到MVC、MVP、MVVM
刚过去的周五(3-14)例行地主持了技术会议,主题正好是<UI层的设计模式——从Script.Code Behind到MVC.MVP.MVVM>,是前一天晚上才定的,中午花了半小时准备了下 ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 开发该选择Blocks还是Delegates
前文:网络上找了很多关于delegation和block的使用场景,发现没有很满意的解释,后来无意中在stablekernel找到了这篇文章,文中作者不仅仅是给出了解决方案,更值得我们深思的是作者独特 ...
- poj 1390 Blocks
poj 1390 Blocks 题意 一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数.问怎么消能使分数最大.. 题解 此题在徐源盛<对一类动态规划问题的研究&g ...
- Java 同步代码块 - Synchronized Blocks
java锁实现原理: http://blog.csdn.net/endlu/article/details/51249156 The synchronized keyword can be used ...
- 区块 Blocks
Structure / Blocks / Demonstrate block regions
- 使用Code::blocks在windows下写网络程序
使用Code::blocks在windows下写网络程序 作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创 ...
- Code::Blocks配置GTK+2和GTK+3
Code::Blocks配置GTK+2和GTK+3 作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创代码根 ...
- [翻译]理解Ruby中的blocks,Procs和lambda
原文出处:Understanding Ruby Blocks, Procs and Lambdas blocks,Procs和lambda(在编程领域被称为闭包)是Ruby中很强大的特性,也是最容易引 ...
- Java Synchronized Blocks
From http://tutorials.jenkov.com/java-concurrency/synchronized.html By Jakob Jenkov A Java synchro ...
随机推荐
- DOM相关知识
一.查找元素 间接查找 parentNode // 父节点 childNodes // 所有子节点 firstChild // 第一个子节点 lastChild // 最后一个子节点 nextSibl ...
- 2017 清北济南考前刷题Day 4 afternoon
期望得分:30+50+30=110 实际得分:40+0+0=40 并查集合并再次写炸... 模拟更相减损术的过程 更相减损术,差一定比被减数小,当被减数=减数时,停止 对于同一个减数来说,会被减 第1 ...
- Raid5两块硬盘掉线可以恢复数据吗_raid数据恢复案例分享
本案例中发生故障的存储类型是HP P2000,虚拟化平台为vmware exsi,共有10块硬盘组成raid5(硬盘容量为1t,其中6号盘是热备盘),由于某些故障导致阵列中两块硬盘亮黄灯掉线,硬盘无法 ...
- 第二篇:利用shell脚本执行webservice请求——基于soap
1. 项目背景 以往我们在开发基于webservice的项目中,我们总习惯于直接使用webservice的一些框架,如Axis,axis2和Xfire等.框架的好处是将webservice所涉及到的s ...
- nyoj 复杂度
复杂度 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) for(k=j+1;k ...
- csrf学习笔记
CSRF全称Cross Site Request Forgery,即跨站点请求伪造.我们知道,攻击时常常伴随着各种各样的请求,而攻击的发生也是由各种请求造成的. CSRF攻击能够达到的目的是使受害者发 ...
- 【Learning】 多项式的相关计算
约定的记号 对于一个多项式\(A(x)\),若其最高次系数不为零的项是\(x^k\),则该多项式的次数为\(k\). 记为\(deg(A)=k\). 对于\(x\in(k,+ \infty)\),称\ ...
- Python内置函数(53)——setattr
英文文档: setattr(object, name, value) This is the counterpart of getattr(). The arguments are an object ...
- Python内置函数(20)——hex
英文文档: hex(x) Convert an integer number to a lowercase hexadecimal string prefixed with "0x" ...
- 原生JS封装时间运动函数
/*讲时间运动之前先给大家复习一下运动函数 通常大家都会写运动框架,一个定时器(Timer),一个步长(step 就是每次运动的距离),一个当前位置(current)一个目标位置(target),然后 ...