来自FallDream的博客,未经允许,请勿转载,谢谢。


Kiana最近喜欢到一家非常美味的寿司餐厅用餐。每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号。每种寿司的份数都是无限的,Kiana也可以无限次取寿司来吃,但每种寿司每次只能取一份,且每次取走的寿司必须是按餐厅提供寿司的顺序连续的一段,即Kiana可以一次取走第1,2种寿司各一份,也可以一次取走第2,3种寿司各一份,但不可以一次取走第1,3种寿司。由于餐厅提供的寿司种类繁多,而不同种类的寿司之间相互会有影响:三文鱼寿司和鱿鱼寿司一起吃或许会很棒,但和水果寿司一起吃就可能会肚子痛。因此,Kiana定义了一个综合美味度di,j(i<j),表示在一次取的寿司中,如果包含了餐厅提供的从第i份到第j份的所有寿司,吃掉这次取的所有寿司后将获得的额外美味度。由于取寿司需要花费一些时间,所以我们认为分两次取来的寿司之间相互不会影响。注意在吃一次取的寿司时,不止一个综合美味度会被累加,比如若Kiana一次取走了第1,2,3种寿司各一份,除了d1,3以外,d1,2,d2,3也会被累加进总美味度中。神奇的是,Kiana的美食评判标准是有记忆性的,无论是单种寿司的美味度,还是多种寿司组合起来的综合美味度,在计入Kiana的总美味度时都只会被累加一次。比如,若Kiana某一次取走了第1,2种寿司各一份,另一次取走了第2,3种寿司各一份,那么这两次取寿司的总美味度d1,1+d2,2+d3,3+d1,2+d2,3,其中d2,2只会计算一次。奇怪的是,这家寿司餐厅的收费标准很不同寻常。具体来说,如果Kiana一共吃过了c(c>0)种代号为x的寿司,则她需要为这些寿司付出mx^2+cx元钱,其中m是餐厅给出的一个常数。现在Kiana想知道,在这家餐厅吃寿司,自己能获得的总美味度(包括所有吃掉的单种寿司的美味度和所有被累加的综合美味度)减去花费的总钱数的最大值是多少。由于她不会算,所以希望由你告诉她。
n<=100 ai<=1000
 
貌似是叫最大权闭合子图
也就是如果你选了[i,j],你就必须选[i,j-1]和[i+1,j]
考虑最小割,先对于每一个编号建出一个点,从它向T连编号平方*m的边。
对于区间[i,j]
如果ij不等,先向[i,j-1][i+1,j]两个点连INF的边,然后如果点权正数就让答案加上它并且从S向它连点权的边,否则向T连点权的边。
如果ij相等,它的点权减去ai ,并且向它的编号对应节点连INF的边;和S,T的建边方法相同
然后最小割。
#include<iostream>
#include<cstdio>
#include<cstring>
#define S 0
#define MN 11001
#define INF (ll)1e18
#define num(x,y) (x-1)*n+y
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') x=x*+ch-'', ch=getchar();
return x*f;
} ll ans=;
int head[MN+],c[MN+],d[MN+],T,top,a[],q[MN+],cnt=,n,m,s[][];
struct edge{int to,next;ll w;}e[MN*]; inline void ins(int f,int t,ll w)
{
e[++cnt]=(edge){t,head[f],w};head[f]=cnt;
e[++cnt]=(edge){f,head[t],};head[t]=cnt;
} bool bfs()
{
memset(d,,sizeof(int)*(T+));int i,j;
for(d[q[top=i=]=S]=;i<=top;++i)
for(int j=c[q[i]]=head[q[i]];j;j=e[j].next)
if(e[j].w&&!d[e[j].to])
d[q[++top]=e[j].to]=d[q[i]]+;
return d[T];
} ll dfs(int x,ll f)
{
if(x==T) return f;ll used=;
for(int&i=c[x];i;i=e[i].next)
if(e[i].w&&d[e[i].to]==d[x]+)
{
int w=dfs(e[i].to,min(f-used,e[i].w));
used+=w;e[i].w-=w;e[i^].w+=w;
if(used==f) return f;
}
return d[x]=-,used;
} int main()
{
n=read();m=read();T=n*n+;
for(int i=;i<=;++i) ins(n*n+i,T,1LL*i*i*m);
for(int i=;i<=n;++i) a[i]=read();
for(int i=;i<=n;++i)
for(int j=i;j<=n;++j)
{
s[i][j]=read();
if(i!=j) ins(num(i,j),num(i+,j),INF),
ins(num(i,j),num(i,j-),INF);
else s[i][j]-=a[i],ins(num(i,j),n*n+a[i],INF);
if(s[i][j]>) ans+=s[i][j],ins(S,num(i,j),s[i][j]);
if(s[i][j]<) ins(num(i,j),T,-s[i][j]);
}
while(bfs()) ans-=dfs(S,INF);
printf("%lld\n",ans);
return ;
}

[bzoj4873]寿司餐厅的更多相关文章

  1. 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)

    [BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...

  2. 【BZOJ4873】[Shoi2017]寿司餐厅 最大权闭合图

    [BZOJ4873][Shoi2017]寿司餐厅 Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di ...

  3. 【最大权闭合子图】bzoj4873 [Shoi2017]寿司餐厅

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 369  Solved: 256[Submit][Status ...

  4. BZOJ4873[Shoi2017]寿司餐厅——最大权闭合子图

    题目描述 Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿司的份数都是无 ...

  5. bzoj千题计划265:bzoj4873: [六省联考2017]寿司餐厅

    http://www.lydsy.com/JudgeOnline/problem.php?id=4873 选a必选b,a依赖于b 最大权闭合子图模型 构图: 1.源点 向 正美味度区间 连 流量为 美 ...

  6. [BZOJ4873][六省联考2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 490  Solved: 350[Submit][Status ...

  7. Bzoj4873 [SXOI2017]寿司餐厅

    Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 64  Solved: 45 Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每 ...

  8. BZOJ4873 LuoguP3749 寿司餐厅

    题面太长,请诸位自行品尝—>寿司餐厅 分析: 首先题目中给了限制条件,假如选了D(i,j)(i<j),那么也就选了D(i+1,j)和D(i,j-1)两个点. 于是我们一下就明白了,哦,最大 ...

  9. bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 大难题啊啊!!! 题目:传送门 题解:一眼题是网络流,但还是不会OTZ,菜啊... %题解... 最大权闭合子图!!! 好的...开始花式建边: 1.对于每个 ...

随机推荐

  1. 在深度linux下安装pip3与jupyter

    前言 以下安装说明基于已经正确安装python3 文件下载 https://pypi.python.org/pypi/pip 下载pip-9.0.1.tar.gz (md5, pgp)文件 安装准备工 ...

  2. LeetCode & Q14-Longest Common Prefix-Easy

    String Description: Write a function to find the longest common prefix string amongst an array of st ...

  3. AssemblyExecuteAdapter

    BizTalk custom adapter AssemblyExecuteAdapter 功能 更为方便的扩展BizTalk custom adapter 的交互方式,只需要实现IAssemblyE ...

  4. WPF 自定义RadioButton样式

    一.RadioButton基本样式 RadioButton基本样式包含两种状态,这里也是使用两张图片来代替两种状态,当然你也可以通过IconFont或Path来替换这两种状态. 效果如下: 样式代码如 ...

  5. 日推20单词 Day02

    1.distinguish v. 区别,辨别 2.tension n. 紧张,不安 3.sympathy n. 同情,慰问 4.admiration n. 羡慕 5.jealousy n. 嫉妒 6. ...

  6. 记录下项目中常用到的JavaScript/JQuery代码一(大量实例)

    一直没有系统学习Javascript和Jquery,每次都是用到的时候去搜索引擎查,感觉效率挺低的.这边把我项目中用的的记录下,想到哪写哪,有时间再仔细整理. 当然,由于我主要是写后端java开发,而 ...

  7. Hadoop API:遍历文件分区目录,并根据目录下的数据进行并行提交spark任务

    hadoop api提供了一些遍历文件的api,通过该api可以实现遍历文件目录: import java.io.FileNotFoundException; import java.io.IOExc ...

  8. Hibernate(二):MySQL server version for the right syntax to use near 'type=InnoDB' at line x

    目前使用的hibernate5.2.9版本,配置的mysql方言为: <property name="hibernate.dialect">org.hibernate. ...

  9. 实现Winform端窗体关闭后刷新html网页内容

    一.首先要知道刷新网页的路径: frmPointEasyToBeat fpetBeat = new frmPointEasyToBeat(bookNoteId, userInfo.UserId); f ...

  10. hdu1009 FatMouse' Trade---贪心

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1009 题意:一共有n个房子,每个房子里有老鼠喜欢吃的javabeans,但是每个房间里的javabea ...